首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Machine learning exists in many realistic scheduling situations. This study focuses on permutation flow shop scheduling problems, where the actual processing time of a job is defined by a general non-increasing function of its scheduled position, i.e., general position-dependent learning effects. The objective functions are to minimize the total completion time, the makespan, the total weighted completion time, and the total weighted discounted completion time, respectively. To solve these problems, we present approximation algorithms based on the optimal permutations for the corresponding single machine scheduling problems and analyze their worst-case error bound.  相似文献   

2.
We consider single-machine scheduling problems with time and position dependent job processing times. In many industrial settings, the processing time of a job changes due to either job deterioration over time or machine/worker’s learning through experiences. In the models we study, each job has its normal processing time. However, a job’s actual processing time depends on when its processing starts and how many jobs have completed before its start. We prove that the classical SPT (Shortest Processing Time) rule remains optimal when we minimize the makespan or the total completion time. For problems of minimizing the total weighted completion time, the maximum lateness, and the discounted total weighted completion time, we present heuristic sequencing rules and analyze the worst-case bounds for performance ratios. We also show that these heuristic rules can be optimal under some agreeable conditions between the normal processing times and job due dates or weights.  相似文献   

3.
A real industrial production phenomenon, referred to as learning effects, has drawn increasing attention. However, most research on this issue considers only single machine problems. Motivated by this limitation, this paper considers flow shop scheduling problems with a general position-dependent learning effects. By the general position-dependent learning effects, we mean that the actual processing time of a job is defined by a general non-increasing function of its scheduled position. The objective is to minimize one of the five regular performance criteria, namely, the total completion time, the makespan, the total weighted completion time, the total weighted discounted completion time, and the sum of the quadratic job completion times. We present heuristic algorithms by using the optimal permutations for the corresponding single machine scheduling problems. We also analyze the worst-case bound of our heuristic algorithms.  相似文献   

4.
This paper introduces a new time-dependent learning effect model into a single-machine scheduling problem. The time-dependent learning effect means that the processing time of a job is assumed to be a function of total normal processing time of jobs scheduled in front of it. In most related studies, the actual job processing time is assumed to be a function of its scheduled position when the learning effect is considered in the scheduling problem. In this paper, the actual processing time of a job is assumed to be proportionate to the length and position of the already scheduled jobs. It shows that the addressed problem remains polynomially solvable for the objectives, i.e., minimization of the total completion time and minimization of the total weighted completion time. It also shows that the shortest processing time (SPT) rule provides the optimum sequence for the addressed problem.  相似文献   

5.
In many situations, the skills of workers continuously improve when repeating the same or similar tasks. This phenomenon is known as the “learning effect” in the literature. In most studies, the learning phenomenon is implemented by assuming the actual job processing time is a function of its scheduled position [D. Biskup, Single-machine scheduling with learning considerations, Eur. J. Oper. Res. 115 (1999) 173–178]. Recently, a new model is proposed where the actual job processing time depends on the sum of the processing times of jobs already processed [C. Koulamas, G.J. Kyparisis, Single-machine and two-machine flowshop scheduling with general learning functions, Eur. J. Oper. Res. 178 (2007) 402–407]. In this paper, we extend their models in which the actual job processing time not only depends on its scheduled position, but also depends on the sum of the processing times of jobs already processed. We then show that the single-machine makespan and the total completion time problems remain polynomially solvable under the proposed model. In addition, we show that the total weighted completion time has a polynomial optimal solution under certain agreeable solutions.  相似文献   

6.
同时具有学习效应和退化效应的单机排序问题   总被引:1,自引:0,他引:1  
本文给出了一种同时具有一般化学习效应和退化效应的单机排序模型。在此模型中,工件的实际加工时间既与工件所在位置又与其开工时间有关,且工件在加工之后具有一个配送时间。其中学习效应是工件所在位置的函数,退化效应是工件开工时间的函数。证明了极小化最大完工时间和极小化总完工时间问题是多项式可解的,在满足一定的条件下,极小化加权总完工时间和极小化最大延误问题也是多项式可解的。推广了一些已有文献中的结论。  相似文献   

7.
In this paper we study some single-machine scheduling problems with learning effects where the actual processing time of a job serves as a function of the total actual processing times of the jobs already processed and of its scheduled position. We show by examples that the optimal schedules for the classical version of problems are not optimal under this actual time and position dependent learning effect model for the following objectives: makespan, sum of kth power of the completion times, total weighted completion times, maximum lateness and number of tardy jobs. But under certain conditions, we show that the shortest processing time (SPT) rule, the weighted shortest processing time (WSPT) rule, the earliest due date (EDD) rule and the modified Moore’s Algorithm can also construct an optimal schedule for the problem of minimizing these objective functions, respectively.  相似文献   

8.
A real industrial production phenomenon, referred to as learning effects, has drawn increasing attention. However, most research on this issue considers only single machine problems. Motivated by this limitation, this paper considers flow shop scheduling problems with an exponential learning effect. By the exponential learning effect, we mean that the processing time of a job is defined by an exponent function of its position in a processing permutation. The objective is to minimize one of the four regular performance criteria, namely, the total completion time, the total weighted completion time, the discounted total weighted completion time, and the sum of the quadratic job completion times. We present heuristic algorithms by using the optimal permutations for the corresponding single-machine scheduling problems. We also analyse the worst-case bound of our heuristic algorithms.  相似文献   

9.
This article considers flow shop scheduling problems with a learning effect. By the learning effect, we mean that the processing time of a job is defined by a function of its position in a processing permutation. The objective is to minimize the total weighted completion time. Some heuristic algorithms by using the optimal permutations for the corresponding single machine scheduling problems are presented, and the worst-case bound of these heuristics are also analyzed.  相似文献   

10.
In many realistic scheduling settings a job processed later consumes more time than when it is processed earlier – this phenomenon is known as scheduling with deteriorating jobs. In the literature on deteriorating job scheduling problems, majority of the research assumed that the actual job processing time of a job is a function of its starting time. In this paper we consider a new deterioration model where the actual job processing time of a job is a function of the processing times of the jobs already processed. We show that the single-machine scheduling problems to minimize the makespan and total completion time remain polynomially solvable under the proposed model. In addition, we prove that the problems to minimize the total weighted completion time, maximum lateness, and maximum tardiness are polynomially solvable under certain agreeable conditions.  相似文献   

11.
In this paper we consider the single-machine scheduling problems with a sum-of-actual-processing-time-based learning effect. By the sum-of-actual-processing-time-based learning effect, we mean that the processing time of a job is defined by a function of the sum of the actual processing time of the already processed jobs. We show that even with the introduction of the sum-of-actual-processing-time-based learning effect to job processing times, the makespan minimization problem, the total completion time minimization problem, the total completion time square minimization problem, and some special cases of the total weighted completion time minimization problem and the maximum lateness minimization problem remain polynomially solvable, respectively.  相似文献   

12.
In this paper we consider the single machine scheduling problem with exponential learning functions. By the exponential learning functions, we mean that the actual job processing time is a function of the total normal processing times of the jobs already processed. We prove that the shortest processing time (SPT) rule is optimal for the total lateness minimization problem. For the following three objective functions, the total weighted completion time, the discounted total weighted completion time, the maximum lateness, we present heuristic algorithms according to the corresponding problems without exponential learning functions. We also analyse the worst-case bound of our heuristic algorithms. It also shows that the problems of minimizing the total tardiness and discounted total weighted completion time are polynomially solvable under some agreeable conditions on the problem parameters.  相似文献   

13.
In this paper we consider the single machine scheduling problem with truncated exponential learning functions. By the truncated exponential learning functions, we mean that the actual job processing time is a function which depends not only on the total normal processing times of the jobs already processed but also on a control parameter. The use of the truncated function is to model the phenomenon that the learning of a human activity is limited. We show that even with the introduction of the proposed model to job processing times, several single machine problems remain polynomially solvable. For the following three objective functions, the total weighted completion time, the discounted total weighted completion time, the maximum lateness, we present heuristic algorithms according to the corresponding problems without truncated exponential learning functions. We also analyse the worst-case bound of our heuristic algorithms.  相似文献   

14.
The paper deals with machine scheduling problems with a general learning effect. By the general learning effect, we mean that the actual processing time of a job is not only a non-increasing function of the total weighted normal processing times of the jobs already processed, but also a non-increasing function of the job’s position in the sequence, where the weight is a position-dependent weight. We show that even with the introduction of a general learning effect to job processing times, some single machine scheduling problems are still polynomially solvable under the proposed model. We also show that some special cases of the flow shop scheduling problems can be solved in polynomial time.  相似文献   

15.
In this paper, we bring into the scheduling field a general learning effect model where the actual processing time of a job is not only a general function of the total actual processing times of the jobs already processed, but also a general function of the job’s scheduled position. We show that the makespan minimization problem and the sum of the kth power of completion times minimization problem can be solved in polynomial time, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

16.
In this paper, we consider the single machine scheduling problems with an actual time-dependent deterioration effect. By the actual time-dependent deterioration effect, we mean that the processing time of a job is defined by increasing function of total actual processing time of jobs in front of it in the sequence. We show that even with the introduction of an actual time-dependent deterioration to job processing times, makespan minimization problem, total completion time minimization problem, the total lateness, and the sum of the quadratic job completion times minimization problem remain polynomially solvable, respectively. We also show that the total weighted completion time minimization problem, the discounted total weighted completion time minimization problem, the maximum lateness minimization problem, and the total tardiness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

17.
在工业生产中,随着员工操作技能的熟练程度的增加,对于相同的任务越往后加工,所花的时间将会减少。 同时,为了尽早完工,管理者也会考虑给加工工件分配一定量的额外资源来缩短工件加工时间。 本文基于以上实例,讨论了工件的实际加工时间既具有学习效应又依赖所分配资源的单机排序问题。 在问题中,假设工件的学习效应是之前已加工工件正常加工时间和的指数函数。 同时随着分配给工件资源量的增加,工件的实际加工时间呈线性减少,所需费用呈线性增加。对这一排序模型,主要探讨以下五个目标函数:最小化最大完工时间与资源消耗量总费用的和;最小化总完工时间与资源消耗量总费用的和;最小化加权总完工时间与资源消耗量总费用的和;最小化总提前、总延误、总共同交货期与资源消耗量总费用的和以及最小化总提前、总延误、总松弛交货期与资源消耗量总费用的和。 本文对前三个目标函数相应的排序问题给出了多项式时间可求解的算法。 对后两个目标函数所涉及的排序问题借助于指派问题分别给出了时间复杂性为O(n3)的算法。  相似文献   

18.
In this paper we consider several single-machine scheduling problems with general learning effects. By general learning effects, we mean that the processing time of a job depends not only on its scheduled position, but also on the total normal processing time of the jobs already processed. We show that the scheduling problems of minimization of the makespan, the total completion time and the sum of the θ  th (θ?0θ?0) power of job completion times can be solved in polynomial time under the proposed models. We also prove that some special cases of the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time.  相似文献   

19.
具有指数和位置学习效应的机器排序问题   总被引:1,自引:0,他引:1  
本文考虑指数学习效应和位置学习效应同时发生的新的排序模型.工件的实际加工时间不仅依赖于已经加工过工件正常加工时间之和的指数函数,而且依赖于该工件所在的位置.单机排序情形下,对于最大完工时间和总完工时间最小化问题给出多项式时间算法.此外某些特殊情况下,总权完工时间和最大延迟最小化问题也给出了多项时间算法.流水机排序情形,对最大完工时间和总完工时间最小化问题在某些特殊情形下给出多项时间算法.  相似文献   

20.
In this paper we consider the flow shop scheduling problems with the effects of learning and deterioration. In this model the processing times of a job is defined as a function of its starting time and position in a sequence. The scheduling objective functions are makespan and total completion time. We prove that even with the introduction of learning effect and deteriorating jobs to job processing times, some special flow shop scheduling problems remain polynomially solvable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号