首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that the chromatic polynomial and flow polynomial of a graph are two important evaluations of its Tutte polynomial, both of which contain much information of the graph. Much research is done on graphs determined entirely by their chromatic polynomials and Tutte polynomials, respectively. Oxley asked which classes of graphs or matroids are determined by their chromatic and flow polynomials together. In this paper, we found several classes of graphs with this property. We first study which graphic parameters are determined by the flow polynomials. Then we study flow-unique graphs. Finally, we show that several classes of graphs, ladders, Möbius ladders and squares of n-cycle are determined by their chromatic polynomials and flow polynomials together. A direct consequence of our theorem is a result of de Mier and Noy [A. de Mier, M. Noy, On graphs determined by their Tutte polynomial, Graphs Comb. 20 (2004) 105-119] that these classes of graphs are Tutte polynomial unique.  相似文献   

2.
The process introduced by E. Johnson [Amer. Math. Monthly73 (1966), 52–55] for constructing connected cubic graphs can be modified so as to obtain restricted classes of cubic graphs, in particular, those defined by their chromatic number or their chromatic index. We construct here the graphs of chromatic number three and the graphs whose chromatic number is equal to its chromatic index (isochromatic graphs). We then give results about the construction of the class of graphs of chromatic index four, and in particular, we construct an infinite class of “snarks.”  相似文献   

3.
The flow polynomials denote the number of nowhere-zero flows on graphs, and are related to the well-known Tutte polynomials and chromatic polynomials. We will show the decomposition of the flow polynomials by edge-cuts and vertex-cuts of size 2 or 3. Moreover by using this decomposition, we will consider what kind of graphs have the same flow polynomials. Another application of the decomposition results is that if a bridgeless graph G does not admit a nowhere-zero k-flow and G has a small vertex- or edge-cut, then a proper bridgeless subgraph of G (a graph minor) does not admit a nowhere-zero k-flow either.  相似文献   

4.
The Star Chromatic Numbers of Some Planar Graphs Derived from Wheels   总被引:1,自引:0,他引:1  
The notion of the star chromatic number of a graph is a generalization of the chromatic number. In this paper, we calculate the star chromatic numbers of three infinite families of planar graphs. The first two families are derived from a 3-or 5-wheel by subdivisions, their star chromatic numbers being 2+2/(2n + 1), 2+3/(3n + 1), and 2+3(3n−1), respectively. The third family of planar graphs are derived from n odd wheels by Hajos construction with star chromatic numbers 3 + 1/n, which is a generalization of one result of Gao et al. Received September 21, 1998, Accepted April 9, 2001.  相似文献   

5.
W.C. Shiu  P.K. Sun 《Discrete Mathematics》2008,308(24):6575-6580
Incidence coloring of a graph G is a mapping from the set of incidences to a color-set C such that adjacent incidences of G are assigned distinct colors. Since 1993, numerous fruitful results as regards incidence coloring have been proved. However, some of them are incorrect. We remedy the error of the proof in [R.A. Brualdi, J.J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58] concerning complete bipartite graphs. Also, we give an example to show that an outerplanar graph with Δ=4 is not 5-incidence colorable, which contradicts [S.D. Wang, D.L. Chen, S.C. Pang, The incidence coloring number of Halin graphs and outerplanar graphs, Discrete Math. 256 (2002) 397-405], and prove that the incidence chromatic number of the outerplanar graph with Δ≥7 is Δ+1. Moreover, we prove that the incidence chromatic number of the cubic Halin graph is 5. Finally, to improve the lower bound of the incidence chromatic number, we give some sufficient conditions for graphs that cannot be (Δ+1)-incidence colorable.  相似文献   

6.
In this paper we obtain chromatic polynomials P(G; λ) of 2-connected graphs of order n that are maximum for positive integer-valued arguments λ ≧ 3. The extremal graphs are cycles Cn and these graphs are unique for every λ ≧ 3 and n ≠ 5. We also determine max{P(G; λ): G is 2-connected of order n and GCn} and all extremal graphs relative to this property, with some consequences on the maximum number of 3-colorings in the class of 2-connected graphs of order n having X(G) = 2 and X(G) = 3, respectively. For every n ≧ 5 and λ ≧ 4, the first three maximum chromatic polynomials of 2-connected graphs are determined.  相似文献   

7.
A new coloring theorem of Kneser graphs   总被引:1,自引:0,他引:1  
In 1997, Johnson, Holroyd and Stahl conjectured that the circular chromatic number of the Kneser graphs KG(n,k) is equal to the chromatic number of these graphs. This was proved by Simonyi and Tardos (2006) [13] and independently by Meunier (2005) [10], if χ(KG(n,k)) is even. In this paper, we propose an alternative version of Kneser's coloring theorem to confirm the Johnson-Holroyd-Stahl conjecture.  相似文献   

8.
We define a skew edge coloring of a graph to be a set of two edge colorings such that no two edges are assigned the same unordered pair of colors. The skew chromatic index s(G) is the minimum number of colors required for a skew edge coloring of G. We show that this concept is closely related to that of skew Room squares and use this relation to prove that s(G) is at most o(G) + 4. We also find better upper bounds for s(G) when G is cyclic, cubic, or bipartite. In particular we use a construction involving Latin squares to show that if G is complete bipartite of order 2n, s(G) is bounded above by roughly 3n2.  相似文献   

9.
Here quadratic and cubic σ-polynomials are characterized, or, equivalently, chromatic polynomials of the graphs of order p, whose chromatic number is p ? 2 or p ? 3, are characterized. Also Robert Korfhage's conjecture that if σ2 + + a is a σ-polynomial then a ≤ 12(b2 ? 5b + 12) is verified. In general, if σ(G) = Σ0naiσi is a σ-polynomial of a graph G, then an?2 is determined.  相似文献   

10.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

11.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

12.
A vertex k-coloring of graph G is distinguishing if the only automorphism of G that preserves the colors is the identity map. It is proper-distinguishing if the coloring is both proper and distinguishing. The distinguishing number ofG, D(G), is the smallest integer k so that G has a distinguishing k-coloring; the distinguishing chromatic number ofG, χD(G), is defined similarly.It has been shown recently that the distinguishing number of a planar graph can be determined efficiently by counting a related parameter-the number of inequivalent distinguishing colorings of the graph. In this paper, we demonstrate that the same technique can be used to compute the distinguishing number and the distinguishing chromatic number of an interval graph. We make use of PQ-trees, a classic data structure that has been used to recognize and test the isomorphism of interval graphs; our algorithms run in O(n3log3n) time for graphs with n vertices. We also prove a number of results regarding the computational complexity of determining a graph’s distinguishing chromatic number.  相似文献   

13.
James Propp The most familiar construction of graphs whose clique number is much smaller than their chromatic number is due to Mycielski, who constructed a sequence Gn of triangle-free graphs with X(Gn) = n. In this article, we calculate the fractional chromatic number of Gn and show that this sequence of numbers satisfies the unexpected recurrence an+1 = an + (1/an). © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Cographs form the minimal family of graphs containing K1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broere and Mynhardt; namely, there exist triangle-free graphs with arbitrarily large c-chromatic numbers. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity. In particular, we show that computing the c-chromatic number is NP-complete for planar graphs.  相似文献   

15.
In this paper we obtain chromatic polynomials of connected 3- and 4-chromatic planar graphs that are maximal for positive integer-valued arguments. We also characterize the class of connected 3-chromatic graphs having the maximum number of p-colorings for p ≥ 3, thus extending a previous result by the author (the case p = 3).  相似文献   

16.
《Discrete Mathematics》2020,343(10):112021
In this note we show every orientation of a connected cubic graph admits an oriented 8-colouring. This lowers the best-known upper bound for the chromatic number of the family of orientations of connected cubic graphs. We further show that every such oriented graph admits a 2-dipath 7-colouring. These results imply that either the oriented chromatic number for the family of orientations of connected cubic graphs equals the 2-dipath chromatic number or the long-standing conjecture of Sopena (Sopena, 1997) regarding the chromatic number of orientations of connected cubic graphs is false.  相似文献   

17.
For each integer n ≥ 7, we exhibit graphs of chromatic number n that contain no subdivided Kn as a subgraph. However, we show that a graph with chromatic number 4 contains as a subgraph a subdivided K4 in which each triangle of the K4 is subdivided to form an odd cycle.  相似文献   

18.
An even polyhedral decomposition of a finite cubic graph G is defined as a set of elementary cycles of even length in G with the property that each edge of G lies in exactly two of them. If G has chromatic index three, then G has an even polyhedral decomposition. We show that, contrary to a theorem of Szekkeres [2], this property to have an even polyhedral decomposition doesn't characterize the cubic graphs of chromatic index three. In particular, there exists an infinite family of sharks all having an even polyhedral decomposition.  相似文献   

19.
20.
Guoli Ding 《Discrete Mathematics》2009,309(5):1118-1122
A well known conjecture of Hadwiger asserts that Kn+1 is the only minor minimal graph of chromatic number greater than n. In this paper, all minor minimal graphs of chromatic index greater than n are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号