首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A labeling of a graph G is distinguishing if it is only preserved by the trivial automorphism of G. The distinguishing chromatic number of G is the smallest integer k such that G has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product is determined for all k and n. In most of the cases it is equal to the chromatic number, thus answering a question of Choi, Hartke and Kaul whether there are some other graphs for which this equality holds.  相似文献   

2.
Melody Chan 《Discrete Mathematics》2008,308(11):2330-2336
The distinguishing number of a graph G, denoted D(G), is the minimum number of colors such that there exists a coloring of the vertices of G where no nontrivial graph automorphism is color-preserving. In this paper, we answer an open question posed in Bogstad and Cowen [The distinguishing number of the hypercube, Discrete Math. 283 (2004) 29-35] by showing that the distinguishing number of , the pth graph power of the n-dimensional hypercube, is 2 whenever 2<p<n-1. This completes the study of the distinguishing number of hypercube powers. We also compute the distinguishing number of the augmented cube AQn, a variant of the hypercube introduced in Choudum and Sunitha [Augmented cubes, Networks 40 (2002) 71-84]. We show that D(AQ1)=2; D(AQ2)=4; D(AQ3)=3; and D(AQn)=2 for n?4. The sequence of distinguishing numbers answers a question raised in Albertson and Collins [An introduction to symmetry breaking in graphs, Graph Theory Notes N.Y. 30 (1996) 6-7].  相似文献   

3.
A deBruijn sequence of orderk, or a k-deBruijn sequence, over an alphabet A is a sequence of length |A|k in which the last element is considered adjacent to the first and every possible k-tuple from A appears exactly once as a string of k-consecutive elements in the sequence. We will say that a cyclic sequence is deBruijn-like if for some k, each of the consecutive k-element substrings is distinct.A vertex coloring χ:V(G)→[k] of a graph G is said to be proper if no pair of adjacent vertices in G receive the same color. Let C(v;χ) denote the multiset of colors assigned by a coloring χ to the neighbors of vertex v. A proper coloring χ of G is irregular if χ(u)=χ(v) implies that C(u;χ)≠C(v;χ). The minimum number of colors needed to irregularly color G is called the irregular chromatic number of G. The notion of the irregular chromatic number pairs nicely with other parameters aimed at distinguishing the vertices of a graph. In this paper, we demonstrate a connection between the irregular chromatic number of cycles and the existence of certain deBruijn-like sequences. We then determine the exact irregular chromatic number of Cn and Pn for n≥3, thus verifying two conjectures given by Okamoto, Radcliffe and Zhang.  相似文献   

4.
A vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices has the distinct sets of colors. The minimum number of colors required for a vertex distinguishing edge coloring of a graph G is denoted by ???? s (G). In this paper, we obtained upper bounds on the vertex distinguishing chromatic index of 3-regular Halin graphs and Halin graphs with ??(G) ?? 4, respectively.  相似文献   

5.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

6.
The distinguishing chromatic number of a graph, G, is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. There are many classes of graphs for which the distinguishing chromatic number has been studied, including Cartesian products of complete graphs (Jerebic and Klav?ar, 2010). In this paper we determine the distinguishing chromatic number of the complement of the Cartesian product of complete graphs, providing an interesting class of graphs, some of which have distinguishing chromatic number equal to the chromatic number, and others for which the difference between the distinguishing chromatic number and chromatic number can be arbitrarily large.  相似文献   

7.
In this paper, we study queue layouts of iterated line directed graphs. A k-queue layout of a directed graph consists of a linear ordering of the vertices and an assignment of each arc to exactly one of the k queues so that any two arcs assigned to the same queue do not nest. The queuenumber of a directed graph is the minimum number of queues required for a queue layout of the directed graph.We present upper and lower bounds on the queuenumber of an iterated line directed graph Lk(G) of a directed graph G. Our upper bound depends only on G and is independent of the number of iterations k. Queue layouts can be applied to three-dimensional drawings. From the results on the queuenumber of Lk(G), it is shown that for any fixed directed graph G, Lk(G) has a three-dimensional drawing with O(n) volume, where n is the number of vertices in Lk(G). These results are also applied to specific families of iterated line directed graphs such as de Bruijn, Kautz, butterfly, and wrapped butterfly directed graphs. In particular, the queuenumber of k-ary butterfly directed graphs is determined if k is odd.  相似文献   

8.
In 1973, P. Erdös conjectured that for eachkε2, there exists a constantc k so that ifG is a graph onn vertices andG has no odd cycle with length less thanc k n 1/k , then the chromatic number ofG is at mostk+1. Constructions due to Lovász and Schriver show thatc k , if it exists, must be at least 1. In this paper we settle Erdös’ conjecture in the affirmative. We actually prove a stronger result which provides an upper bound on the chromatic number of a graph in which we have a bound on the chromatic number of subgraphs with small diameter.  相似文献   

9.
The distance graph G(D) has the set of integers as vertices and two vertices are adjacent in G(D) if their difference is contained in the set DZ. A conjecture of Zhu states that if the chromatic number of G(D) achieves its maximum value |D|+1 then the graph has a triangle. The conjecture is proven to be true if |D|?3. We prove that the chromatic number of a distance graph with D={a,b,c,d} is five only if either D={1,2,3,4k} or D={a,b,a+b,b-a}. This confirms a stronger version of Zhu's conjecture for |D|=4, namely, if the chromatic number achieves its maximum value then the graph contains K4.  相似文献   

10.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

11.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph has been studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we conjecture that the dimension of the hole space of a graph is not smaller than the competition number of the graph. We verify this conjecture for various kinds of graphs and show that our conjectured inequality is indeed an equality for connected triangle-free graphs.  相似文献   

12.
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.  相似文献   

13.
Wensong Lin 《Discrete Mathematics》2008,308(16):3565-3573
The generalized Mycielskians of graphs (also known as cones over graphs) are the natural generalization of the Mycielskians of graphs (which were first introduced by Mycielski in 1955). Given a graph G and any integer p?0, one can transform G into a new graph μp(G), the p-Mycielskian of G. In this paper, we study the kth chromatic numbers χk of Mycielskians and generalized Mycielskians of graphs. We show that χk(G)+1?χk(μ(G))?χk(G)+k, where both upper and lower bounds are attainable. We then investigate the kth chromatic number of Mycielskians of cycles and determine the kth chromatic number of p-Mycielskian of a complete graph Kn for any integers k?1, p?0 and n?2. Finally, we prove that if a graph G is a/b-colorable then the p-Mycielskian of G, μp(G), is (at+bp+1)/bt-colorable, where . And thus obtain graphs G with m(G) grows exponentially with the order of G, where m(G) is the minimal denominator of a a/b-coloring of G with χf(G)=a/b.  相似文献   

14.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

15.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

16.
The notion of a competition graph was introduced by Cohen in 1968. The competition graph C(D) of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. In 1978, Roberts defined the competition number k(G) of a graph G as the minimum number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. In 1982, Opsut gave two lower bounds for the competition number of a graph. In this paper, we give a generalization of these two lower bounds for the competition number of a graph.  相似文献   

17.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

18.
This paper is the second part of a study devoted to the mutual exclusion scheduling problem. Given a simple and undirected graph G and an integer k, the problem is to find a minimum coloring of G such that each color is used at most k times. The cardinality of such a coloring is denoted by χ(G,k). When restricted to interval graphs or related classes like circular-arc graphs and tolerance graphs, the problem has some applications in workforce planning. Unfortunately, the problem is shown to be NP-hard for interval graphs, even if k is a constant greater than or equal to four [H.L. Bodlaender, K. Jansen, Restrictions of graph partition problems. Part I. Theoret. Comput. Sci. 148 (1995) 93-109]. In this paper, the problem is approached from a different point of view by studying a non-trivial and practical sufficient condition for optimality. In particular, the following proposition is demonstrated: if an interval graph G admits a coloring such that each color appears at least k times, then χ(G,k)=⌈n/k⌉. This proposition is extended to several classes of graphs related to interval graphs. Moreover, all our proofs are constructive and provide efficient algorithms to solve the MES problem for these graphs, given a coloring satisfying the condition in input.  相似文献   

19.
A (hyper)graph G is called k-critical if it has chromatic number k, but every proper sub(hyper)graph of it is (k-1)-colourable. We prove that for sufficiently large k, every k-critical triangle-free graph on n vertices has at least (k-o(k))n edges. Furthermore, we show that every (k+1)-critical hypergraph on n vertices and without graph edges has at least (k-3/3?{k}) n(k-3/\sqrt[3]{k}) n edges. Both bounds differ from the best possible bounds by o(kn) even for graphs or hypergraphs of arbitrary girth.  相似文献   

20.
We present an infinite set A of finite graphs such that for any graph G e A the order | V(k n (G))| of the n-th iterated clique graph k n (G) is a linear function of n. We also give examples of graphs G such that | V(k n(G))| is a polynomial of any given positive degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号