首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We introduce in this paper the notion of the chromatic number of an oriented graph G (that is of an antisymmetric directed graph) defined as the minimum order of an oriented graph H such that G admits a homomorphism to H. We study the chromatic number of oriented k-trees and of oriented graphs with bounded degree. We show that there exist oriented k-trees with chromatic number at least 2k+1 - 1 and that every oriented k-tree has chromatic number at most (k + 1) × 2k. For 2-trees and 3-trees we decrease these upper bounds respectively to 7 and 16 and show that these new bounds are tight. As a particular case, we obtain that oriented outerplanar graphs have chromatic number at most 7 and that this bound is tight too. We then show that every oriented graph with maximum degree k has chromatic number at most (2k - 1) × 22k-2. For oriented graphs with maximum degree 2 we decrease this bound to 5 and show that this new bound is tight. For oriented graphs with maximum degree 3 we decrease this bound to 16 and conjecture that there exists no such connected graph with chromatic number greater than 7. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 191–205, 1997  相似文献   

2.
An oriented graph is a directed graph with no directed cycle of length one or two. The relative clique number of an oriented graph is the cardinality of a largest subset X of vertices such that each pair of vertices is either adjacent or connected by a directed 2-path. It is known that the oriented relative clique number of a planar graph is at most 80. Here we improve the upper bound to 32. We also prove an upper bound of 14 for oriented relative clique number of triangle-free planar graphs. Furthermore, we determine the exact values of oriented relative clique number for the families of outerplanar graphs with girth at least g and planar graphs with girth at least g+2 for all g3. Moreover, we study the relation of oriented relative clique number with oriented chromatic number, oriented absolute clique number and maximum degree of a graph. We also show that oriented relative clique number of a connected subcubic graph is at most seven which weakly supports a conjecture by Sopena (JGT 1997).  相似文献   

3.
An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented graph with a maximum average degree less than and girth at least 5 has an oriented chromatic number at most 16. This implies that every oriented planar graph with girth at least 5 has an oriented chromatic number at most 16, that improves the previous known bound of 19 due to Borodin et al. [O.V. Borodin, A.V. Kostochka, J. Nešet?il, A. Raspaud, É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89].  相似文献   

4.
A k-colouring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclic k-colourings such that each colour class induces a graph with a given(hereditary) property. In particular, we consider acyclic k-colourings in which each colour class induces a graph with maximum degree at most t, which are referred to as acyclic t-improper k-colourings. The acyclic t-improper chromatic number of a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree at most 3. Finally, we prove that any graph G with Δ(G) 4 can be acyclically coloured with 4 colours in such a way that each colour class induces an acyclic graph with maximum degree at most 3.  相似文献   

5.
On the total coloring of certain graphs   总被引:13,自引:0,他引:13  
In this paper we investigate the total chromatic number of certain graphs. In particular, we show that every cubic graph is totally colorable in five colors.  相似文献   

6.
《Journal of Graph Theory》2018,88(4):606-630
Motivated by an old conjecture of P. Erdős and V. Neumann‐Lara, our aim is to investigate digraphs with uncountable dichromatic number and orientations of undirected graphs with uncountable chromatic number. A graph has uncountable chromatic number if its vertices cannot be covered by countably many independent sets, and a digraph has uncountable dichromatic number if its vertices cannot be covered by countably many acyclic sets. We prove that, consistently, there are digraphs with uncountable dichromatic number and arbitrarily large digirth; this is in surprising contrast with the undirected case: any graph with uncountable chromatic number contains a 4‐cycle. Next, we prove that several well‐known graphs (uncountable complete graphs, certain comparability graphs, and shift graphs) admit orientations with uncountable dichromatic number in ZFC. However, we show that the statement “every graph G of size and chromatic number ω1 has an orientation D with uncountable dichromatic number” is independent of ZFC. We end the article with several open problems.  相似文献   

7.
We prove that every oriented planar graph admits a homomorphism to the Paley tournament P271 and hence that every oriented planar graph has an antisymmetric flow number and a strong oriented chromatic number of at most 271. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 200–210, 2006  相似文献   

8.
In 1983, Bouchet conjectured that every flow-admissible signed graph admits a nowhere-zero 6-flow. By Seymour's 6-flow theorem, Bouchet's conjecture holds for signed graphs with all edges positive. Recently, Rollová et al proved that every flow-admissible signed cubic graph with two negative edges admits a nowhere-zero 7-flow, and admits a nowhere-zero 6-flow if its underlying graph either contains a bridge, or is 3-edge-colorable, or is critical. In this paper, we improve and extend these results, and confirm Bouchet's conjecture for signed graphs with frustration number at most two, where the frustration number of a signed graph is the smallest number of vertices whose deletion leaves a balanced signed graph.  相似文献   

9.
The oriented chromatic number χo(G ) of an oriented graph G = (V, A) is the minimum number of vertices in an oriented graph H for which there exists a homomorphism of G to H . The oriented chromatic number χo(G) of an undirected graph G is the maximum of the oriented chromatic numbers of all the orientations of G. This paper discusses the relations between the oriented chromatic number and the acyclic chromatic number and some other parameters of a graph. We shall give a lower bound for χo(G) in terms of χa(G). An upper bound for χo(G) in terms of χa(G) was given by Raspaud and Sopena. We also give an upper bound for χo(G) in terms of the maximum degree of G. We shall show that this upper bound is not far from being optimal. © 1997 John Wiley & Sons, Inc.  相似文献   

10.
We investigate the local chromatic number of shift graphs and prove that it is close to their chromatic number. This implies that the gap between the directed local chromatic number of an oriented graph and the local chromatic number of the underlying undirected graph can be arbitrarily large. We also investigate the minimum possible directed local chromatic number of oriented versions of “topologically t‐chromatic” graphs. We show that this minimum for large enough t‐chromatic Schrijver graphs and t‐chromatic generalized Mycielski graphs of appropriate parameters is ?t/4?+1. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 65‐82, 2010  相似文献   

11.
We prove that every oriented graph with a maximum average degree less than 18/7 admits a homomorphism into \(P_{7}^{*}\), the Paley tournament of order seven with one vertex deleted. In particular, every oriented planar graph of girth at least 9 has a homomorphism into \(P_{7}^{*}\), whence every planar graph of girth at least 9 has oriented chromatic number at most 6.  相似文献   

12.
《Journal of Graph Theory》2018,88(4):631-640
The 3‐Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a 2‐regular subgraph and a matching. We show that this conjecture holds for the class of connected plane cubic graphs.  相似文献   

13.
We consider the problem: Characterize the edge orientations of a finite graph with a maximum number of pairs of oppositely oriented edges. The problem is solved for finite cubic graphs.  相似文献   

14.
The d-distance face chromatic number of a connected plane graph is the minimum number of colors in such a coloring of its faces that whenever two distinct faces are at the distance at most d, they receive distinct colors. We estimate 1-distance chromatic number for connected 4-regular plane graphs. We show that 0-distance face chromatic number of any connected multi-3-gonal 4-regular plane graphs is 4. © 1995, John Wiley & Sons, Inc.  相似文献   

15.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

16.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

17.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

18.
《Journal of Graph Theory》2018,89(3):304-326
A famous conjecture of Gyárfás and Sumner states for any tree T and integer k, if the chromatic number of a graph is large enough, either the graph contains a clique of size k or it contains T as an induced subgraph. We discuss some results and open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star S and integer k, if the chromatic number of a digraph is large enough, either the digraph contains a clique of size k or it contains S as an induced subgraph. As an evidence, we prove that for any oriented star S, every oriented graph with sufficiently large chromatic number contains either a transitive tournament of order 3 or S as an induced subdigraph. We then study for which sets of orientations of P4 (the path on four vertices) similar statements hold. We establish some positive and negative results.  相似文献   

19.
In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous work on the NP-completeness of the harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously cographs and interval graphs, we prove that the problem is also NP-complete for connected interval and permutation graphs.  相似文献   

20.
《Quaestiones Mathematicae》2013,36(7):953-975
Abstract

Every partial colouring of a Hamming graph is uniquely related to a partial Latin hyper-rectangle. In this paper we introduce the Θ-stabilized (a, b)-colouring game for Hamming graphs, a variant of the (a, b)-colouring game so that each move must respect a given autotopism Θ of the resulting partial Latin hyperrectangle. We examine the complexity of this variant by means of its chromatic number. We focus in particular on the bi-dimensional case, for which the game is played on the Cartesian product of two complete graphs, and also on the hypercube case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号