首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this article is to analyze a transient axisymmetric electromagnetic model involving velocity terms in the Ohm's law. To this end, we introduce a time‐dependent weak formulation leading to a degenerate parabolic problem and establish its well posedness.We propose a finite‐element method for space discretization and prove well posedness and error estimates. Then, we combine it with a backward Euler time discretization and prove stability and error estimates. Finally, numerical results assessing the performance of the method are reported. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

2.
Summary. It is well-known the loss of accuracy when a Runge–Kutta method is used together with the method of lines for the full discretization of an initial boundary value problem. We show that this phenomenon, called order reduction, is caused by wrong boundary values in intermediate stages. With a right choice, the order reduction can be avoided and the optimal order of convergence in time is achieved. We prove this fact for time discretizations of abstract initial boundary value problems based on implicit Runge–Kutta methods. Moreover, we apply these results to the full discretization of parabolic problems by means of Galerkin finite element techniques. We present some numerical examples in order to confirm that the optimal order is actually achieved. Received July 10, 2000 / Revised version received March 13, 2001 / Published online October 17, 2001  相似文献   

3.
本文对于一类带有狄拉克函数δ0初值的抛物型方程,在有限差分法下进行离散化,证明了其数值解的存在性、唯一性,尤其是它的稳定性.  相似文献   

4.
In this paper, we study the superconvergence of the error for the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when the alternating flux is used. We prove that if we apply piecewise $k$-th degree polynomials, the error between the LDG solution and the exact solution is ($k$+2)-th order superconvergent at the Radau points with suitable initial discretization. Moreover, we also prove the LDG solution is ($k$+2)-th order superconvergent for the error to a particular projection of the exact solution. Even though we only consider periodic boundary condition, this boundary condition is not essential, since we do not use Fourier analysis. Our analysis is valid for arbitrary regular meshes and for $P^k$ polynomials with arbitrary $k$ ≥ 1. We perform numerical experiments to demonstrate that the superconvergence rates proved in this paper are sharp.  相似文献   

5.
We investigate the time evolution of a previous elliptic model. We study a parabolic model concerning the “numerical locking” phenomenon, namely a model for three-dimensional curved rods clamped at the endpoints. We show that the convergence of the numerical schemes is independent of the discretization parameters and the thickness of the rod. We present corresponding numerical experiments and we make a comparison with the results obtained for the hyperbolic model.  相似文献   

6.
This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction-diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results.  相似文献   

7.

This paper is concerned with the time discretization of nonlinear evolution equations. We work in an abstract Banach space setting of analytic semigroups that covers fully nonlinear parabolic initial-boundary value problems with smooth coefficients. We prove convergence of variable stepsize backward Euler discretizations under various smoothness assumptions on the exact solution. We further show that the geometric properties near a hyperbolic equilibrium are well captured by the discretization. A numerical example is given.

  相似文献   


8.
Summary We estimate the order of the difference between the numerical approximation and the solution of a parabolic variational inequality. The numerical approximation is obtained using a finite element discretization in space and a finite difference discretization in time which is more general than is used in the literature. We obtain better error estimates than those given in the literature. The error estimates are compared with numerical experiments.  相似文献   

9.
In this article, we study the convergence analysis for the initial and boundary value problem of parabolic equations on a disk with singular solutions. It is assumed that the exact solution performs singular properties that its derivatives go to infinity at the boundary of the disk. We propose a fully implicit time-stepping numerical scheme. A stretching polynomial-like function with a parameter is used to construct a local grid refinement. Over the nonuniform partition, we combine the Swartztrauber-Sweet scheme and the backward Euler method in spatial and temporal discretization, respectively. We carry out convergence analysis and analyze the effects of the parameter. It is shown that our numerical scheme is of first order accuracy for temporal discretization and of almost second order accuracy for spatial discretization. Numerical experiments are performed to illustrate our analysis results and show that there exists an optimal value for the parameter to obtain a best approximate solution.  相似文献   

10.
The finite volume element method is a discretization technique for partial differential equations, but in general case the coefficient matrix of its linear system is not symmetric, even for the self-adjoint continuous problem. In this paper we develop a kind of symmetric modified finite volume element methods both for general self-adjoint elliptic and for parabolic problems on general discretization, their coefficient matrix are symmetric. We give the optimal order energy norm error estimates. We also prove that the difference between the solutions of the finite volume element method and symmetric modified finite volume element method is a high order term.  相似文献   

11.
We consider a control-constrained parabolic optimal control problem without Tikhonov term in the tracking functional.For the numerical treatment,we use variational discretization of its Tikhonov regularization:For the state and the adjoint equation,we apply Petrov-Galerkin schemes in time and usual conforming finite elements in space.We prove a-priori estimates for the error between the discretized regularized problem and the limit problem.Since these estimates are not robust if the regularization parameter tends to zero,we establish robust estimates,which--depending on the problem's regularity——enhance the previous ones.In the special case of bang-bang solutions,these estimates are further improved.A numerical example confirms our analytical findings.  相似文献   

12.
We present a numerical scheme for Landau–Lifshitz–Gilbert equation coupled with the equation of elastodynamics. The considered physical model describes the behaviour of ferromagnetic materials when magnetomechanical coupling is taken into account. The time‐discretization is based on the backward Euler method with projection. In the numerical approximation, the two equations are decoupled by a suitable linearization in order to solve the magnetic and mechanic part separately. The resulting semi‐implicit scheme is linear and allows larger time‐steps than explicit methods. We prove stability and error estimates for the presented time discretization in 2D. Finally, we test the accuracy of the scheme on an academic numerical example with known exact solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we develop the multilevel augmentation method for solving nonlinear operator equations of the second kind and apply it to solving the one-dimensional sine-Gordon equation. We first give a general setting of the multilevel augmentation method for solving the second kind nonlinear operator equations and prove that the multilevel augmentation method preserves the optimal convergence order of the projection method while reducing computational cost significantly. Then we describe the semi-discrete scheme and the fully-discrete scheme based on multiscale methods for solving the sine-Gordon equation, and apply the multilevel augmentation method to solving the discrete equation. A complete analysis for convergence order is proposed. Finally numerical experiments are presented to confirm the theoretical results and illustrate the efficiency of the method.  相似文献   

14.
In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing—with exponential convergence to equilibrium. Considering test functions of class $\mathcal{C}^2$ , bounded and with bounded derivatives, we prove that we can approximate this invariant measure using the numerical scheme, with order 1/2 with respect to the time step.  相似文献   

15.
We analyze the convergence of a numerical scheme for a class of degenerate parabolic problems modelling reactions in porous media, and involving a nonlinear, possibly vanishing diffusion. The scheme involves the Kirchhoff transformation of the regularized nonlinearity, as well as an Euler implicit time stepping and triangle based finite volumes. We prove the convergence of the approach by giving error estimates in terms of the discretization and regularization parameter.  相似文献   

16.
Summary Spinodal decomposition, i.e., the separation of a homogeneous mixture into different phases, can be modeled by the Cahn-Hilliard equation - a fourth order semilinear parabolic equation. If elastic stresses due to a lattice misfit become important, the Cahn-Hilliard equation has to be coupled to an elasticity system to take this into account. Here, we present a discretization based on finite elements and an implicit Euler scheme. We first show solvability and uniqueness of solutions. Based on an energy decay property we then prove convergence of the scheme. Finally we present numerical experiments showing the impact of elasticity on the morphology of the microstructure.Research supported by DFG Priority Program Analysis, Modeling and Simulation of Multiscale Problems under AR234/5-2 and GA695/2-2  相似文献   

17.
We consider a shape optimization problem in rotordynamics where the mass of a rotor is minimized subject to constraints on the natural frequencies. Our analysis is based on a class of rotors described by a Rayleigh beam model including effects of rotary inertia and gyroscopic moments. The solution of the equation of motion leads to a generalized eigenvalue problem. The governing operators are non-symmetric due to the gyroscopic terms. We prove the existence of solutions for the optimization problem by using the theory of compact operators. For the numerical treatment of the problem a finite element discretization based on a variational formulation is considered. Applying results on spectral approximation of linear operators we prove that the solution of the discretized optimization problem converges towards the solution of the continuous problem if the discretization parameter tends to zero. Finally, a priori estimates for the convergence order of the eigenvalues are presented and illustrated by a numerical example.  相似文献   

18.
In this paper, we investigate the superconvergence of fully discrete splitting positive definite mixed finite element (MFE) methods for parabolic optimal control problems. For the space discretization, the state and co-state are approximated by the lowest order Raviart–Thomas MFE spaces and the control variable is approximated by piecewise constant functions. The time discretization of the state and co-state are based on finite difference methods. We derive the superconvergence between the projections of exact solutions and numerical solutions or the exact solutions and postprocessing numerical solutions for the control, state and co-state. A numerical example is provided to validate the theoretical results.  相似文献   

19.
We consider a convection-diffusion problem with strong parabolic boundary layers and its discretization using upwind finite differences or bilinear finite elements on a layer-adapted mesh. Based on a new decomposition of the solution we are able to prove optimal uniform convergence results.  相似文献   

20.
A nonlinear parabolic problem with a nonlocal boundary condition is studied. We prove the existence of a solution for a monotonically increasing and Lipschitz continuous nonlinearity. The approximation method is based on Rothe’s method. The solution on each time step is obtained by iterations, convergence of which is shown using a fixed-point argument. The space discretization relies on FEM. Theoretical results are supported by numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号