首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this paper, we investigate the superconvergence property and the $L^∞$-error estimates of mixed finite element methods for a semilinear elliptic control problem. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We derive some superconvergence results for the control variable. Moreover, we derive $L^∞$-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

2.
In this paper, we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions. We derive some superconvergence properties for the control variable and the state variables. Moreover, we derive $L^∞$- and $H^{-1}$-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

3.
In this paper, we investigate the superconvergence property and the $L^{\infty}$-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions. We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions. Moreover, we derive $L^{\infty}$-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

4.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

5.
In this article, we investigate the superconvergence of the finite element approximation for optimal control problem governed by nonlinear elliptic equations. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We give the superconvergence analysis for both the control variable and the state variables. Finally, the numerical experiments show the theoretical results.  相似文献   

6.
In this paper, we investigate the superconvergence property of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. A superconvergent approximation of the control variable $u$ will be constructed by a projection of the discrete adjoint state. It is proved that this approximation have convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

7.
In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.  相似文献   

8.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.  相似文献   

9.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

10.
In this paper, a priori error estimates are derived for the mixed finite element discretization of optimal control problems governed by fourth order elliptic partial differential equations. The state and co-state are discretized by Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. The error estimates derived for the state variable as well as those for the control variable seem to be new. We illustrate with a numerical example to confirm our theoretical results.  相似文献   

11.
In this paper, we investigate the superconvergence property of the numerical solution of a quadratic convex optimal control problem by using rectangular mixed finite element methods. The state and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Some realistic regularity assumptions are presented and applied to error estimation by using an operator interpolation technique. We derive superconvergence properties for the flux functions along the Gauss lines and for the scalar functions at the Gauss points via mixed projections. Moreover, global superconvergence results are obtained by virtue of an interpolation postprocessing technique. Thus, based on these superconvergence estimates, some asymptotic exactness a posteriori error estimators are presented for the mixed finite element methods. Finally, some numerical examples are given to demonstrate the practical side of the theoretical results about superconvergence.

  相似文献   


12.
In this paper, we shall investigate the superconvergence property of quadratic elliptical optimal control problems by triangular mixed finite element methods. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite elements and the control is discretized by piecewise constant functions. We prove the superconvergence error estimate of h2 in L2-norm between the approximated solution and the interpolation of the exact control variable. Moreover, by postprocessing technique, we find that the projection of the discrete adjoint state is superclose (in order h2) to the exact control variable.  相似文献   

13.
In this article, we shall give a brief review on the fully discrete mixed finite element method for general optimal control problems governed by parabolic equations. The state and the co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise constant elements. Furthermore, we derive a posteriori error estimates for the finite element approximation solutions of optimal control problems. Some numerical examples are given to demonstrate our theoretical results.  相似文献   

14.
In this paper, we investigate the L ??(L 2)-error estimates and superconvergence of the semidiscrete mixed finite elementmethods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k ?? 0). We derive error estimates for approximation of both state and control. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problems.  相似文献   

15.
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.  相似文献   

16.
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

17.
In this paper, we discuss the superconvergence of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and costate are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximation of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that this approximation has convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

18.
In this paper we analyze a characteristic finite element approximation of convex optimal control problems governed by linear convection-dominated diffusion equations with pointwise inequality constraints on the control variable, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by either piecewise constant functions or piecewise linear discontinuous functions. A priori error estimates are derived for the state, co-state and the control. Numerical examples are given to show the efficiency of the characteristic finite element method.  相似文献   

19.
研究了参数识别问题混合有限元解的最大模误差估计.利用1阶Raviart-Thomas混合有限元离散状态和对偶状态变量,利用分片线性函数逼近控制变量,获得了状态变量和控制变量的最大模误差估计,这里控制变量的收敛阶是h~2,状态变量的收敛阶是h3/2|lnh|1/2.最后利用数值算例验证了理论结果.  相似文献   

20.
In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element approximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time discretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We derive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori $L^2(0, T ;L^2(Ω))$ error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号