首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent fuzzy sets as an integer string of fixed length. Each fuzzy rule-based classifier, which is a set of fuzzy rules, is represented as a concatenated integer string of variable length. Our GBML algorithm simultaneously maximizes the accuracy of rule sets and minimizes their complexity. The accuracy is measured by the number of correctly classified training patterns while the complexity is measured by the number of fuzzy rules and/or the total number of antecedent conditions of fuzzy rules. We examine the interpretability-accuracy tradeoff for training patterns through computational experiments on some benchmark data sets. A clear tradeoff structure is visualized for each data set. We also examine the interpretability-accuracy tradeoff for test patterns. Due to the overfitting to training patterns, a clear tradeoff structure is not always obtained in computational experiments for test patterns.  相似文献   

2.
A fuzzy traffic signal controller uses simple “if–then” rules which involve linguistic concepts such as medium or long, presented as membership functions. In neurofuzzy traffic signal control, a neural network adjusts the fuzzy controller by fine-tuning the form and location of the membership functions. The learning algorithm of the neural network is reinforcement learning, which gives credit for successful system behavior and punishes for poor behavior; those actions that led to success tend to be chosen more often in the future. The objective of the learning is to minimize the vehicular delay caused by the signal control policy. In simulation experiments, the learning algorithm is found successful at constant traffic volumes: the new membership functions produce smaller vehicular delay than the initial membership functions.  相似文献   

3.
A neural fuzzy control system with structure and parameter learning   总被引:8,自引:0,他引:8  
A general connectionist model, called neural fuzzy control network (NFCN), is proposed for the realization of a fuzzy logic control system. The proposed NFCN is a feedforward multilayered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. The NFCN can be constructed from supervised training examples by machine learning techniques, and the connectionist structure can be trained to develop fuzzy logic rules and find membership functions. Associated with the NFCN is a two-phase hybrid learning algorithm which utilizes unsupervised learning schemes for structure learning and the backpropagation learning scheme for parameter learning. By combining both unsupervised and supervised learning schemes, the learning speed converges much faster than the original backpropagation algorithm. The two-phase hybrid learning algorithm requires exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to obtain. To solve this problem, a reinforcement neural fuzzy control network (RNFCN) is further proposed. The RNFCN is constructed by integrating two NFCNs, one functioning as a fuzzy predictor and the other as a fuzzy controller. By combining a proposed on-line supervised structure-parameter learning technique, the temporal difference prediction method, and the stochastic exploratory algorithm, a reinforcement learning algorithm is proposed, which can construct a RNFCN automatically and dynamically through a reward-penalty signal (i.e., “good” or “bad” signal). Two examples are presented to illustrate the performance and applicability of the proposed models and learning algorithms.  相似文献   

4.
In this paper, a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserve the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other in the sense of the Euclidean norm are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging center of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks.The present work is complemented by a second part which focuses on the control aspects and to be published in this journal([17]). This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems.  相似文献   

5.
A learning process for fuzzy control rules using genetic algorithms   总被引:10,自引:0,他引:10  
The purpose of this paper is to present a genetic learning process for learning fuzzy control rules from examples. It is developed in three stages: the first one is a fuzzy rule genetic generating process based on a rule learning iterative approach, the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules, removing the redundant fuzzy rules, and the thrid one is a tuning process for adjusting the membership functions of the fuzzy rules. The three components of the learning process are developed formulating suitable genetic algorithms.  相似文献   

6.
A novel impulsive control approach based on interval Type-2 T–S fuzzy model has been presented for nonlinear systems in this paper. This approach makes up for the drawback of Type-1 fuzzy impulsive control, which cannot fully handle the uncertainties in describing the complex nonlinear systems by Type-1 fuzzy membership functions and cannot give rigorous fuzzy rules. Further more, this approach uses the “broad band” effect of the Type-2 membership functions to solve the noise of training data and exterior disturbance of the Type-1 fuzzy impulsive control. By using Lyapunov theory and Lipschitz condition, which is combined with integrated approaches such as comparison methods and linear matrix inequalities, the Type-2 fuzzy impulsive controller is designed and the general asymptotical stability analysis of the systems is given. Finally, the simulation of the inverted pendulum model demonstrates the validity and superiority of the proposed method by easily determining the membership functions and choosing minimum number of fuzzy rules and the method can handle random disturbance and data uncertainties very well.  相似文献   

7.
A kind of real-time stable self-learning fuzzy neural network (FNN) control system is proposed in this paper. The control system is composed of two parts: (1) A FNN controller which use genetic algorithm (GA) to search optimal fuzzy rules and membership functions for the unknown controlled plant; (2) A supervisor which can guarantee the stability of the control system during the real-time learning stage, since the GA has some random property which may cause control system unstable. The approach proposed in this paper combine a priori knowledge of designer and the learning ability of FNN to achieve optimal fuzzy control for an unknown plant in real-time. The efficiency of the approach is verified by computer simulation.  相似文献   

8.
This paper proposes a genetic-algorithm-based learning strategy that models membership functions of the fuzzy attributes of surfaces in a model based machine vision system. The objective function aims at enhancing recognition performance in terms of maximizing the degree of discrimination among classes. As a result, the accuracy of recognizing known instances of objects and generalization capability by recognizing unknown instances of known objects are greatly improved. Performance enhancement is achieved by incorporating an off-line learning mechanism using genetic algorithm in the feedback path of the recognition system.  相似文献   

9.
We propose two methods for tuning membership functions of a kernel fuzzy classifier based on the idea of SVM (support vector machine) training. We assume that in a kernel fuzzy classifier a fuzzy rule is defined for each class in the feature space. In the first method, we tune the slopes of the membership functions at the same time so that the margin between classes is maximized under the constraints that the degree of membership to which a data sample belongs is the maximum among all the classes. This method is similar to a linear all-at-once SVM. We call this AAO tuning. In the second method, we tune the membership function of a class one at a time. Namely, for a class the slope of the associated membership function is tuned so that the margin between the class and the remaining classes is maximized under the constraints that the degrees of membership for the data belonging to the class are large and those for the remaining data are small. This method is similar to a linear one-against-all SVM. This is called OAA tuning. According to the computer experiment for fuzzy classifiers based on kernel discriminant analysis and those with ellipsoidal regions, usually both methods improve classification performance by tuning membership functions and classification performance by AAO tuning is slightly better than that by OAA tuning.  相似文献   

10.
This paper presents a hybrid method for identification of Pareto-optimal fuzzy classifiers (FCs). In contrast to many existing methods, the initial population for multiobjective evolutionary algorithms (MOEAs) is neither created randomly nor a priori knowledge is required. Instead, it is created by the proposed two-step initialization method. First, a decision tree (DT) created by C4.5 algorithm is transformed into an FC. Therefore, relevant variables are selected and initial partition of input space is performed. Then, the rest of the population is created by randomly replacing some parameters of the initial FC, such that, the initial population is widely spread. That improves the convergence of MOEAs into the correct Pareto front. The initial population is optimized by NSGA-II algorithm and a set of Pareto-optimal FCs representing the trade-off between accuracy and interpretability is obtained. The method does not require any a priori knowledge of the number of fuzzy sets, distribution of fuzzy sets or the number of relevant variables. They are all determined by it. Performance of the obtained FCs is validated by six benchmark data sets from the literature. The obtained results are compared to a recently published paper [H. Ishibuchi, Y. Nojima, Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning, International Journal of Approximate Reasoning 44 (1) (2007) 4–31] and the benefits of our method are clearly shown.  相似文献   

11.
Normally, the real-world inventory control problems are imprecisely defined and human interventions are often required to solve these decision-making problems. In this paper, a realistic inventory model with imprecise demand, lead-time and inventory costs have been formulated and an inventory policy is proposed to minimize the cost using man–machine interaction. Here, demand increases with time at a decreasing rate. The imprecise parameters of lead-time, inventory costs and demand are expressed through linear/non-linear membership functions. These are represented by different types of membership functions, linear or quadratic, depending upon the prevailing supply condition and marketing environment. The imprecise parameters are first transformed into corresponding interval numbers and then following the interval mathematics, the objective function for average cost is changed into respective multi-objective functions. These functions are minimized and solved for a Pareto-optimum solution by interactive fuzzy decision-making procedure. This process leads to man–machine interaction for optimum and appropriate decision acceptable to the decision maker’s firm. The model is illustrated numerically and the results are presented in tabular forms.  相似文献   

12.
In this paper, by considering the experts' vague or fuzzy understanding of the nature of the parameters in the problem-formulation process, multiobjective 0–1 programming problems involving fuzzy numbers are formulated. Using the a-level sets of fuzzy numbers, the corresponding nonfuzzy α-programming problem is introduced. The fuzzy goals of the decision maker (DM) for the objective functions are quantified by eliciting the corresponding linear membership functions. Through the introduction of an extended Pareto optimality concept, if the DM specifies the degree α and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the augmented minimax problems through genetic algorithms with double strings. Then an interactive fuzzy satisficing method for deriving a satisficing solution for the DM efficiently from an extended Pareto optimal solution set is presented. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.  相似文献   

13.
For structural system with fuzzy variables as well as random variables, a novel algorithm for obtaining membership function of fuzzy reliability is presented on interval optimization based Line Sampling (LS) method. In the presented algorithm, the value domain of the fuzzy variables under the given membership level is firstly obtained according to their membership functions. Then, in the value domain of the fuzzy variables, bounds of reliability of the structure are obtained by the nesting analysis of the interval optimization, which is performed by modern heuristic methods, and reliability analysis, which is achieved by the LS method in the reduced space of the random variables. In this way the uncertainties of the input variables are propagated to the safety measurement of the structure, and the membership function of the fuzzy reliability is obtained. The presented algorithm not only inherits the advantage of the direct Monte Carlo method in propagating and distinguishing the fuzzy and random uncertainties, but also can improve the computational efficiency tremendously in case of acceptable precision. Several examples are used to illustrate the advantages of the presented algorithm.  相似文献   

14.
Pythagorean fuzzy set, an extension of the intuitionistic fuzzy set which relax the condition of sum of their membership function to square sum of its membership functions is less than one. Under these environment and by incorporating the idea of the confidence levels of each Pythagorean fuzzy number, the present study investigated a new averaging and geometric operators namely confidence Pythagorean fuzzy weighted and ordered weighted operators along with their some desired properties. Based on its, a multi criteria decision-making method has been proposed and illustrated with an example for showing the validity and effectiveness of it. A computed results are compared with the aid of existing results.  相似文献   

15.
This paper describes the use of fuzzy set theory in goal programming (GP) problems. In particular, it is demonstrated how fuzzy or imprecise aspirations of the decision maker (DM) can be quantified through the use of piecewise linear and continuous functions. Models are then presented for the use of fuzzy goal programming with preemptive priorities, with Archimedean weights, and with the maximization of the membership function corresponding to the minimum goal. Examples are also provided.  相似文献   

16.
TOPSIS (technique for order preference by similarity to ideal solution) is a multiple criteria method to identify solutions from a finite set of alternatives based upon simultaneous minimization of distance from an ideal point and maximization of distance from a nadir point. This paper proposes a fuzzy TOPSIS algorithm to solve bi-level multi-objective decision-making (BL-MODM) problems, and in which the objective function at each level are non-linear functions which are to be maximized. The proposed model for getting the satisfactory solution of the BL-MODM problems includes the membership functions for the upper level decision variables vector with possible tolerances, the membership function of the distance function from the positive ideal solution (PIS) and the membership function of the distance function from the negative ideal solution (NIS). A numerical illustrative example is given to clarify the proposed TOPSIS approach of this paper.  相似文献   

17.
In this paper, a novel approach is presented to fine tune a direct fuzzy controller based on very limited information on the nonlinear plant to be controlled. Without any off-line pretraining, the algorithm achieves very high control performance through a two-stage algorithm. In the first stage, coarse tuning of the fuzzy rules (both rule consequents and membership functions of the premises) is accomplished using the sign of the dependency of the plant output with respect to the control signal and an overall analysis of the main operating regions. In stage two, fine tuning of the fuzzy rules is achieved based on the controller output error using a gradient-based method. The enhanced features of the proposed algorithm are demonstrated by various simulation examples.  相似文献   

18.
A single-valued neutrosophic (SVN) set is a powerful general formal framework that generalizes the concept of fuzzy set and intuitionistic fuzzy set. In SVN set, indeterminacy is quantified explicitly, and truth membership, indeterminacy membership, and falsity membership are independent. In this paper, we apply the notion of SVN sets to Lie algebras. We develop the concepts of SVN Lie subalgebras and SVN Lie ideals. We describe some interesting results of SVN Lie ideals.  相似文献   

19.
A theory of fuzzy random variables is developed that applies to situations involving both randomness and fuzziness. The use of membership functions that are quasi-concave play an important role in the theory. The expectation of a fuzzy random variable is a fuzzy variable (fuzzy set). The usual linearity properties of probabilistic expectation carry over to fuzzy random variables. A special case of a fuzzy Law of Large Number is proven.  相似文献   

20.
In this paper, two new algorithms are presented to solve multi-level multi-objective linear programming (ML-MOLP) problems through the fuzzy goal programming (FGP) approach. The membership functions for the defined fuzzy goals of all objective functions at all levels are developed in the model formulation of the problem; so also are the membership functions for vectors of fuzzy goals of the decision variables, controlled by decision makers at the top levels. Then the fuzzy goal programming approach is used to achieve the highest degree of each of the membership goals by minimizing their deviational variables and thereby obtain the most satisfactory solution for all decision makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号