首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In this letter, a new numerical method is proposed for solving second order linear singularly perturbed boundary value problems with left layers. Firstly a piecewise reproducing kernel method is proposed for second order linear singularly perturbed initial value problems. By combining the method and the shooting method, an effective numerical method is then proposed for solving second order linear singularly perturbed boundary value problems. Two numerical examples are used to show the effectiveness of the present method.  相似文献   

2.
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.  相似文献   

3.
In this paper a numerical method is presented to solve singularly perturbed two points boundary value problems for second order ordinary differential equations consisting a discontinuous source term. First, in this method, an asymptotic expansion approximation of the solution of the boundary value problem is constructed using the basic ideas of a well known perturbation method WKB. Then some initial value problems and terminal value problems are constructed such that their solutions are the terms of this asymptotic expansion. These initial value problems are happened to be singularly perturbed problems and therefore fitted mesh method (Shishkin mesh) are used to solve these problems. Necessary error estimates are derived and examples provided to illustrate the method.  相似文献   

4.
In this paper, we describe a numerical method based on fitted operator finite difference scheme for the boundary value problems for singularly perturbed delay differential equations with turning point and mixed shifts. Similar boundary value problems are encountered while simulating several real life processes for instance, first exit time problem in the modelling of neuronal variability. A rigorous analysis is carried out to obtain priori estimates on the solution and its derivatives for the considered problem. In the development of numerical methods for constructing an approximation to the solution of the problem, a special type of mesh is generated to tackle the delay term along with the turning point. Then, to develop robust numerical scheme and deal with the singularity because of the small parameter multiplying the highest order derivative term, an exponential fitting parameter is used. Several numerical examples are presented to support the theory developed in the paper.  相似文献   

5.
Summary.   The collocation tension spline is considered as a numerical solution of a singularly perturbed two-point boundary value problem: . The collocation points are chosen as a generalization of the classical Gaussian points. Unlike the traditional approach, we employ the B-spline representation in the analysis. This leads to global quadratic convergence of the method for small perturbation parameters, and, for large values, the order of convergence is four. Received October 4, 1996 / Revised version received September 23, 1999 / Published online October 16, 2000  相似文献   

6.
In this paper, we develop a numerical technique for singularly perturbed boundary value problems using B-spline functions and least square method. The approximate solution derived in this article is convergent to the exact solution and can be applied both to linear and nonlinear models. The numerical examples and computational results illustrate and guarantee a higher accuracy for this technique.  相似文献   

7.
In this series of three papers we study singularly perturbed (SP) boundary value problems for equations of elliptic and parabolic type. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids, we can construct difference schemes that allow approximation of the solution and the normalised diffusive flux uniformly with respect to the small parameter. We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges $ε$-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed. In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type; (iii) Problems for SP parabolic equation with discontinuous boundary conditions.  相似文献   

8.
l)ThisworkwassupportedbyNWOthroughgrantIBo7-3Go12.BOUNDAarv^LUEPRoBLEMFORELLIPTICEQUMIONwiTHMIXEDBOUNDAavCONDITION1.IntroductionInthispedwesketchavarietyofspecialmethodswhichareusedforconstructinge-unifornilyconvergelltschemes-WeshaJldemonstrateamethodwhichachieveshaprovedaccuracyforsolvingsingularlyperturbedb0undaryvalueproblemforeiliPicequatiouswithparabolicboundarylayers-InSecti0n4weshallintroduceanaturalclass,B,oftritefferenceschemes,inwhich(bytheabovementi0nedaP…  相似文献   

9.
1.IntroductionThesolution0fpartialdifferentiaJequationsthataresingularlyperturbedand/orhavediscontinu0usboundaryconditionsgenerallyhave0nlylimitedsmoothness.DuetothisfaCtdndcultiesaPpearwhenwesolvethesepr0blemsbynumericalmethods.Forexampleforregularparab0licequationswithdiscontinuousboundaryconditions,classicalmethods(FDMorFEM)onregularrectangulargridsd0n0tconvergeintheIoo-normonadomainthatincludesaneighbourhood0fthediscontinulty[8,9,4].Iftheparametermultiplyingthehighest-orderderivativeva…  相似文献   

10.
In this paper, a collocation method is given to solve singularly perturbated two‐point boundary value problems. By using the collocation points, matrix operations and the matrix relations of the Bessel functions of the first kind and their derivatives, the boundary value problem is converted to a system of the matrix equations. By solving this system, the approximate solution is obtained. Also, an error problem is constructed by the residual function, and it is solved by the presented method. Thus, the error function is estimated, and the approximate solutions are improved. Finally, numerical examples are given to show the applicability of the method, and also, our results are compared by existing results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

11.
We develop a numerical technique for a class of singularly perturbed two-point singular boundary value problems on an uniform mesh using polynomial cubic spline. The scheme derived in this paper is second-order accurate. The resulting linear system of equations has been solved by using a tri-diagonal solver. Numerical results are provided to illustrate the proposed method and to compared with the methods in [R.K. Mohanty, Urvashi Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives, Appl. Math. Comput., 172 (2006) 531–544; M.K. Kadalbajoo, V.K. Aggarwal, Fitted mesh B-spline method for solving a class of singular singularly perturbed boundary value problems, Int. J. Comput. Math. 82 (2005) 67–76].  相似文献   

12.
The objective of this paper is to construct and analyze a fitted operator finite difference method (FOFDM) for the family of time‐dependent singularly perturbed parabolic convection–diffusion problems. The solution to the problems we consider exhibits an interior layer due to the presence of a turning point. We first establish sharp bounds on the solution and its derivatives. Then, we discretize the time variable using the classical Euler method. This results in a system of singularly perturbed interior layer two‐point boundary value problems. We propose a FOFDM to solve the system above. Through a rigorous error analysis, we show that the scheme is uniformly convergent of order one with respect to both time and space variables. Moreover, we apply Richardson extrapolation to enhance the accuracy and the order of convergence of the proposed scheme. Numerical investigations are carried out to demonstrate the efficacy and robustness of the scheme.  相似文献   

13.
A new kind of numerical method based on rational spectral collocation with the sinh transformation is presented for solving parameterized singularly perturbed two-point boundary value problems with one boundary layer. By means of the sinh transformation, the original Chebyshev points are mapped onto the transformed ones clustered near the singular points of the problem. The results from asymptotic analysis as regards the singularity of the solution are employed to determine the parameters in the transformation. Numerical experiments including several nonlinear cases illustrate the high accuracy and efficiency of our method.  相似文献   

14.
We consider a class of boundary value problems for linear multi-term fractional differential equations which involve Caputo-type fractional derivatives. Using an integral equation reformulation of the boundary value problem, some regularity properties of the exact solution are derived. Based on these properties, the numerical solution of boundary value problems by piecewise polynomial collocation methods is discussed. In particular, we study the attainable order of convergence of proposed algorithms and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by two numerical examples.  相似文献   

15.
The motive of the current study is to derive pointwise error estimates for the three-step Taylor Galerkin finite element method for singularly perturbed problems. Pointwise error estimates have not been derived so far for the said method in the finite element framework. Singularly perturbed problems represent a class of problems containing a very sharp boundary layer in their solution. A small parameter called singular perturbation parameter is multiplied with the highest order derivative terms. When this parameter becomes smaller and smaller, a boundary layer occurs and the solution changes very abruptly in a very small portion of the domain. Because of this sudden change in the nature of the solution, it becomes very difficult for the numerical methods to capture the solution accurately specially in the boundary layer region. In the present study finite element analysis has been carried out for such one-dimensional singularly perturbed time dependent convection-diffusion equations. Exponentially fitted splines have been used for the three-step Taylor Galerkin finite element method to converge. Pointwise error estimates have been derived for the method and it is shown that the method is conditionally convergent of first order accurate in space and third order accurate in time. Numerical results have been presented for both the linear and nonlinear problems.  相似文献   

16.
We consider a family of parametric linear-quadratic optimal control problems with terminal and control constraints. This family has the specific feature that the class of optimal controls is changed for an arbitrarily small change in the parameter. In the perturbed problem, the behavior of the corresponding trajectory on noncritical arcs of the optimal control is described by solutions of singularly perturbed boundary value problems. For the solutions of these boundary value problems, we obtain an asymptotic expansion in powers of the small parameter ?. The asymptotic formula starts from a term of the order of 1/? and contains boundary layers. This formula is used to justify the asymptotic expansion of the optimal control for a perturbed problem in the family. We suggest a simple method for constructing approximate solutions of the perturbed optimal control problems without integrating singularly perturbed systems. The results of a numerical experiment are presented.  相似文献   

17.
In this paper, we show differentiability of solutions with respect to the given boundary value data for nonlinear singularly perturbed boundary value problems and its corresponding asymptotic expansion of small parameter. This result fills the gap caused by the solvability condition in Esipova’s result so as to lay a rigorous foundation for the theory of boundary function method on which a guideline is provided as to how to apply this theory to the other forms of singularly perturbed nonlinear boundary value problems and enlarge considerably the scope of applicability and validity of the boundary function method. A third-order singularly perturbed boundary value problem arising in the theory of thin film flows is revisited to illustrate the theory of this paper. Compared to the original result, the imposed potential condition is completely removed by the boundary function method to obtain a better result. Moreover, an improper assumption on the reduced problem has been corrected.  相似文献   

18.
In this paper, a parameter‐uniform numerical scheme for the solution of singularly perturbed parabolic convection–diffusion problems with a delay in time defined on a rectangular domain is suggested. The presence of the small diffusion parameter ? leads to a parabolic right boundary layer. A collocation method consisting of cubic B ‐spline basis functions on an appropriate piecewise‐uniform mesh is used to discretize the system of ordinary differential equations obtained by using Rothe's method on an equidistant mesh in the temporal direction. The parameter‐uniform convergence of the method is shown by establishing the theoretical error bounds. The numerical results of the test problems validate the theoretical error bounds.  相似文献   

19.
四阶椭圆型方程奇异摄动问题的渐近解   总被引:2,自引:2,他引:0  
本文考虑了四阶椭圆型偏微分方程奇异摄动边值问题,建立了解及其导数的能量估计,并用Lyuternik-Vishik方法构造了形式渐近解.最后利用能量估计我们得到了渐近展开式余项的界.  相似文献   

20.
In this paper we consider a numerical approximation of a third order singularly perturbed boundary value problem by an upwind finite difference scheme on a Shishkin mesh. The behavior of the solution, and the stability of the continuous problem are discussed. The proof of the uniform convergence of the proposed numerical method is based on the strongly uniform stability and a weak consistency property of the discrete problem. Numerical experiments verify our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号