首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Quaestiones Mathematicae》2013,36(1):121-138
Abstract

In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was designed to approximate the differential operator in question. Very often the approaches for constructing these operators had limited scope in the sense that it was difficult to extend them to solve even simple one-dimensional singularly perturbed partial differential equations. However, in some of our most recent work, we have successfully designed a class of FOFDMs and extended them to solve singularly perturbed time-dependent partial differential equations. In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is analyzed for convergence. Our method is uniformly convergent with order one and two, respectively, in time and space, with respect to the perturbation parameters. Some numerical experiments supporting the theoretical investigations are also presented.  相似文献   

2.
In this article, we consider a class of singularly perturbed mixed parabolic‐elliptic problems whose solutions possess both boundary and interior layers. To solve these problems, a hybrid numerical scheme is proposed and it is constituted on a special rectangular mesh which consists of a layer resolving piecewise‐uniform Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction. The domain under consideration is partitioned into two subdomains. For the spatial discretization, the proposed scheme is comprised of the classical central difference scheme in the first subdomain and a hybrid finite difference scheme in the second subdomain, whereas the time derivative in the given problem is discretized by the backward‐Euler method. We prove that the method converges uniformly with respect to the perturbation parameter with almost second‐order spatial accuracy in the discrete supremum norm. Numerical results are finally presented to validate the theoretical results.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1931–1960, 2014  相似文献   

3.
求解奇异摄动转向点问题的一个二阶一致收敛格式   总被引:2,自引:0,他引:2  
本文对奇异摄动转向点问题构造了一个关于ε一致收敛的二阶正型格式,并给出了数值例子.  相似文献   

4.
We consider a system of coupled singularly perturbed reaction–diffusion two-point boundary-value problems. A hybrid difference scheme on a piecewise-uniform Shishkin mesh is constructed for solving this system, which generates better approximations to the exact solution than the classical central difference scheme. Moreover, we prove that the method is third order uniformly convergent in the maximum norm when the singular perturbation parameter is small. Numerical experiments are conducted to validate the theoretical results.  相似文献   

5.
We consider a class of singularly perturbed elliptic problems posed on a unit square. These problems are solved by using fitted mesh methods by many researchers but no attempts are made to solve them using fitted operator methods, except our recent work on reaction–diffusion problems [J.B. Munyakazi and K.C. Patidar, Higher order numerical methods for singularly perturbed elliptic problems, Neural Parallel Sci. Comput. 18(1) (2010), pp. 75–88]. In this paper, we design two fitted operator finite difference methods (FOFDMs) for singularly perturbed convection–diffusion problems which possess solutions with exponential and parabolic boundary layers, respectively. We observe that both of these FOFDMs are ?-uniformly convergent. This fact contradicts the claim about singularly perturbed convection–diffusion problems [Miller et al. Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996] that ‘when parabolic boundary layers are present, …, it is not possible to design an ?-uniform FOFDM if the mesh is restricted to being a uniform mesh’. We confirm our theoretical findings through computational investigations and also found that we obtain better results than those of Linß and Stynes [Appl. Numer. Math. 31 (1999), pp. 255–270].  相似文献   

6.
This article is devoted to the study of a hybrid numerical scheme for a class of singularly perturbed parabolic convection-diffusion problems with discontinuous convection coefficients. In general, the solutions of this class of problems possess strong interior layers. To solve these problems, we discretize the time derivative by the backward-Euler method and the spatial derivatives by a hybrid finite difference scheme (a proper combination of the midpoint upwind scheme in the outer regions and the classical central difference scheme in the interior layer regions) on a layer resolving piecewise-uniform Shishkin mesh. It is proved that the method converges uniformly in the discrete supremum norm with almost second-order spatial accuracy. Moreover, an optimal order of convergence (up to a logarithmic factor) is obtained inside the layer regions. Extensive numerical experiments are conducted to support the theoretical results and also, to demonstrate the accuracy of this method.  相似文献   

7.
We construct an efficient hybrid numerical method for solving coupled systems of singularly perturbed linear parabolic problems of reaction-diffusion type. The discretization of the coupled system is based on the use of an additive or splitting scheme on a uniform mesh in time and a hybrid scheme on a layer-adapted mesh in space. It is proven that the developed numerical method is uniformly convergent of first order in time and third order in space. The purpose of the additive scheme is to decouple the components of the vector approximate solution at each time step and thus make the computation more efficient. The numerical results confirm the theoretical convergence result and illustrate the efficiency of the proposed strategy.  相似文献   

8.
This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction-diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results.  相似文献   

9.
We establish the equivalence of two sets of transition points corresponding to solutions of singularly perturbed boundary-value problems with interior boundary layers. The first set appears in the formalism for constructing the asymptotics of the solution of a boundary-value problem and the second, in the direct scheme formalism for constructing the asymptotics of the solution of a variational problem.  相似文献   

10.
In this paper, we describe a numerical method based on fitted operator finite difference scheme for the boundary value problems for singularly perturbed delay differential equations with turning point and mixed shifts. Similar boundary value problems are encountered while simulating several real life processes for instance, first exit time problem in the modelling of neuronal variability. A rigorous analysis is carried out to obtain priori estimates on the solution and its derivatives for the considered problem. In the development of numerical methods for constructing an approximation to the solution of the problem, a special type of mesh is generated to tackle the delay term along with the turning point. Then, to develop robust numerical scheme and deal with the singularity because of the small parameter multiplying the highest order derivative term, an exponential fitting parameter is used. Several numerical examples are presented to support the theory developed in the paper.  相似文献   

11.
We consider a system of M(≥2) singularly perturbed equations of reaction-diffusion type coupled through the reaction term. A high order Schwarz domain decomposition method is developed to solve the system numerically. The method splits the original domain into three overlapping subdomains. On two boundary layer subdomains we use a compact fourth order difference scheme on a uniform mesh while on the interior subdomain we use a hybrid scheme on a uniform mesh. We prove that the method is almost fourth order ε-uniformly convergent. Furthermore, we prove that when ε is small, one iteration is sufficient to get almost fourth order ε-uniform convergence. Numerical experiments are performed to support the theoretical results.  相似文献   

12.
In this article, we study numerical approximation for a class of singularly perturbed parabolic (SPP) convection-diffusion turning point problems. The considered SPP problem exhibits a parabolic boundary layer in the neighborhood of one of the sides of the domain. Some a priori bounds are given on the exact solution and its derivatives, which are necessary for the error analysis. A numerical scheme comprising of implicit finite difference method for time discretization on a uniform mesh and a hybrid scheme for spatial discretization on a generalized Shishkin mesh is proposed. Then Richardson extrapolation method is applied to increase the order of convergence in time direction. The resulting scheme has second-order convergence up to a logarithmic factor in space and second-order convergence in time. Numerical experiments are conducted to demonstrate the theoretical results and the comparative study is done with the existing schemes in literature to show better accuracy of the proposed schemes.  相似文献   

13.
An exponentially fitted special second-order finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer at one end (left or right) point. A fitting factor is introduced in a tri-diagonal finite difference scheme and is obtained from the theory of singular perturbations. Thomas Algorithm is used to solve the system and its stability is investigated. To demonstrate the applicability of the method, we have solved several linear and non-linear problems. From the results, it is observed that the present method approximates the exact solution very well.  相似文献   

14.
In this series of three papers we study singularly perturbed (SP) boundary value problems for equations of elliptic and parabolic type. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids, we can construct difference schemes that allow approximation of the solution and the normalised diffusive flux uniformly with respect to the small parameter. We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges $ε$-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed. In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type; (iii) Problems for SP parabolic equation with discontinuous boundary conditions.  相似文献   

15.
研究一类具有不连续系数的奇异摄动二阶拟线性边值问题,其解因一阶导数的不连续性而出现内部层.用合成展开法和上下解定理得到所提问题内部层解的存在性和渐近估计.所得结果应用到由Farrell等(Farrell P A,O'Riordan E,Shishkin G.A class of singularly perturbed quasilineax differential equations with interiors layers.Mathematics of Computation,2009,78:103-127)所提出的一个特殊拟线性问题.  相似文献   

16.
l)ThisworkwassupportedbyNWOthroughgrantIBo7-3Go12.BOUNDAarv^LUEPRoBLEMFORELLIPTICEQUMIONwiTHMIXEDBOUNDAavCONDITION1.IntroductionInthispedwesketchavarietyofspecialmethodswhichareusedforconstructinge-unifornilyconvergelltschemes-WeshaJldemonstrateamethodwhichachieveshaprovedaccuracyforsolvingsingularlyperturbedb0undaryvalueproblemforeiliPicequatiouswithparabolicboundarylayers-InSecti0n4weshallintroduceanaturalclass,B,oftritefferenceschemes,inwhich(bytheabovementi0nedaP…  相似文献   

17.
1.IntroductionThesolution0fpartialdifferentiaJequationsthataresingularlyperturbedand/orhavediscontinu0usboundaryconditionsgenerallyhave0nlylimitedsmoothness.DuetothisfaCtdndcultiesaPpearwhenwesolvethesepr0blemsbynumericalmethods.Forexampleforregularparab0licequationswithdiscontinuousboundaryconditions,classicalmethods(FDMorFEM)onregularrectangulargridsd0n0tconvergeintheIoo-normonadomainthatincludesaneighbourhood0fthediscontinulty[8,9,4].Iftheparametermultiplyingthehighest-orderderivativeva…  相似文献   

18.
In this paper, we propose a method for the numerical solution of self adjoint singularly perturbed third order boundary value problems in which the highest order derivative is multiplied by a small parameter $\varepsilon$. In this method, first we introduce the derivatives of two scale relations satisfied by the subdivision schemes. After that we use these derivatives to construct the subdivision collocation method for the numerical solution of singularly perturbed boundary value problems. Convergence of the subdivision collocation method is also discussed. Numerical examples are presented to illustrate the proposed method.  相似文献   

19.
This paper is devoted to developing an Il'in‐Allen‐Southwell (IAS) parameter‐uniform difference scheme on uniform meshes for solving strongly coupled systems of singularly perturbed convection‐diffusion equations whose solutions may display boundary and/or interior layers, where strong coupling means that the solution components in the system are coupled together mainly through their first derivatives. By decomposing the coefficient matrix of convection term into the Jordan canonical form, we first construct an IAS scheme for 1D systems and then extend the scheme to 2D systems by employing an alternating direction technique. The robustness of the developed IAS scheme is illustrated through a series of numerical examples, including the magnetohydrodynamic duct flow problem with a high Hartmann number. Numerical evidence indicates that the IAS scheme appears to be formally second‐order accurate in the sense that it is second‐order convergent when the perturbation parameter ϵ is not too small and when ϵ is sufficiently small, the scheme is first‐order convergent in the discrete maximum norm uniformly in ϵ.  相似文献   

20.
本文讨论基于整体误差一致展开式的一致收敛离散方法解的一致高阶精度外推.将该方法应用于非自共轭问题的Il'in-Allen-Southwell格式,我们得到了二阶一致收敛的外推解,并用数值计算说明该结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号