首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
李宝麟  王保弟 《数学杂志》2017,37(5):987-998
本文研究了无限滞后测度泛函微分方程的平均化.利用广义常微分方程的平均化方法,在无限滞后测度泛函微分方程可以转化为广义常微分方程的基础上,获得了这类方程的周期和非周期平均化定理,推广了一些相关的结果.  相似文献   

2.
In this work we establish the theory of dichotomies for generalized ordinary differential equations, introducing the concepts of dichotomies for these equations, investigating their properties and proposing new results. We establish conditions for the existence of exponential dichotomies and bounded solutions. Using the correspondences between generalized ordinary differential equations and other equations, we translate our results to measure differential equations and impulsive differential equations. The fact that we work in the framework of generalized ordinary differential equations allows us to manage functions with many discontinuities and of unbounded variation.  相似文献   

3.
This article studies positive solutions of Robin problem for semi-linear second order ordinary differential equations. Nondegeneracy and uniqueness results are proven for homogeneous differential equations. Necessary and sufficient conditions for the existence of one or two positive solutions for inhomogeneous differential equations or differential equations with concave-convex nonlinearities are obtained by making use of the nondegeneracy and uniqueness results for positive solutions of homogeneous differential equations.  相似文献   

4.
Stability in distribution of stochastic differential equations with Markovian switching and stochastic differential delay equations with Markovian switching have been studied by several authors and this kind of stability is an important property for stochastic systems. There are several papers which study this stability for stochastic differential equations with Markovian switching and stochastic differential delay equations with Markovian switching technically. In our paper, we are concerned with the general neutral stochastic functional differential equations with Markovian switching and we derive the sufficient conditions for stability in distribution. At the end of our paper, one example is established to illustrate the theory of our work.  相似文献   

5.
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.  相似文献   

6.
Frobenius integrable decompositions are presented for a kind of ninth-order partial differential equations of specific polynomial type. Two classes of such partial differential equations possessing Frobenius integrable decompositions are connected with two rational Bäcklund transformations of dependent variables. The presented partial differential equations are of constant coefficients, and the corresponding Frobenius integrable ordinary differential equations possess higher-order nonlinearity. The proposed method can be also easily extended to the study of partial differential equations with variable coefficients.  相似文献   

7.
This paper is concerned with entire and meromorphic solutions of linear partial differential equations of second order with polynomial coefficients. We will characterize entire solutions for a class of partial differential equations associated with the Jacobi differential equations, and give a uniqueness theorem for their meromorphic solutions in the sense of the value distribution theory, which also applies to general linear partial differential equations of second order. The results are complemented by various examples for completeness.  相似文献   

8.
A scalar complex ordinary differential equation can be considered as two coupled real partial differential equations, along with the constraint of the Cauchy–Riemann equations, which constitute a system of four equations for two unknown real functions of two real variables. It is shown that the resulting system possesses those real Lie symmetries that are obtained by splitting each complex Lie symmetry of the given complex ordinary differential equation. Further, if we restrict the complex function to be of a single real variable, then the complex ordinary differential equation yields a coupled system of two ordinary differential equations and their invariance can be obtained in a non-trivial way from the invariance of the restricted complex differential equation. Also, the use of a complex Lie symmetry reduces the order of the complex ordinary differential equation (restricted complex ordinary differential equation) by one, which in turn yields a reduction in the order by one of the system of partial differential equations (system of ordinary differential equations). In this paper, for simplicity, we investigate the case of scalar second-order ordinary differential equations. As a consequence, we obtain an extension of the Lie table for second-order equations with two symmetries.  相似文献   

9.
Partial differential equations with possibly discontinuous coefficients play an important part in engineering, physics and ecology. In this paper, we will study nonlinear partial differential equations with variable coefficients arising from population models. Generally speaking, it is difficult to analyze the behavior of nonlinear partial differential equations; therefore, we usually rely on the numerical approximation. Currently, there is an increasing interest in designing numerical schemes that preserve energy properties for differential equations. We will design the numerical schemes that preserve discrete energy property and show numerical experiments for a nonlinear partial differential equation with variable coefficients.  相似文献   

10.
关于拟线性混合型边界问题的概率表示   总被引:1,自引:0,他引:1  
关于某些抛物型和椭圆型偏微分方程的混合边界问题的解被表示为一类联系于Ito正向反射边界随机微分方程的反向随机微分方程的解.  相似文献   

11.
We introduce the notion of an invariant solution relative to an involutive distribution. We give sufficient conditions for existence of such a solution to a system of differential equations. In the case of an evolution system of partial differential equations we describe how to construct auxiliary equations for functions determining differential constraints compatible with the original system. Using this theorem, we introduce linear and quasilinear defining equations which enable us to find some classes of involutive distributions, nonclassical symmetries, and differential constraints. We present examples of reductions and exact solutions to some partial differential equations stemming from applications.  相似文献   

12.
研究了n阶线性模糊微分方程的模糊初值问题,将n阶线性模糊微分方程转化成一阶线性模糊微分方程组,利用结构元方法将模糊线性微分方程组转化成两个分明的线性微分方程组,通过分明的线性微分方程组的解构造出原n阶线性模糊微分方程的解.最后,给出了具体的算例.  相似文献   

13.
In this paper, we present an analytical solution for different systems of differential equations by using the differential transformation method. The convergence of this method has been discussed with some examples which are presented to show the ability of the method for linear and non-linear systems of differential equations. We begin by showing how the differential transformation method applies to a non-linear system of differential equations and give two examples to illustrate the sufficiency of the method for linear and non-linear stiff systems of differential equations. The results obtained are in good agreement with the exact solution and Runge–Kutta method. These results show that the technique introduced here is accurate and easy to apply.  相似文献   

14.
IntroductionFor many years, many papers investigated the linear stabilit}' of delay differential equation(DDE) solvers and a significant number of important results have already been found for bothRunge-Kutta methods and linear multistep methods (see, for example, [l--8]). In this paper,we firstly consider stability of numerical methods with derivative for DDEs. It is shown thatA-stability of multistep multiderivative methods for ordinary differential equations (ODEs) isequit,alent to p-s…  相似文献   

15.
The article, being a continuation of the first one [A.A. Kilbas and J.J. Trujillo (2001). Differential equations of fractional order. Methods, results and problems, I. Applicable Analysis , 78 (1-2), 153-192.], deals with the so-called differential equations of fractional order in which an unknown function is contained under the operation of a derivative of fractional order. The methods and the results in the theory of such fractional differential equations are presented including the Dirichlet-type problem for ordinary fractional differential equations, studying such equations in spaces of generalized functions, partial fractional differential equations and more general abstract equations, and treatment of numerical methods for ordinary and partial fractional differential equations. Problems and new trends of research are discussed.  相似文献   

16.
We prove the comparison theorems for scalar stochastic differential equations in the case of different diffusion coefficients. Conditions are given of stability with probability 1 with respect to the trivial solution to stochastic differential equations with random coefficients. The results remain valid for deterministic analogs of stochastic differential equations with symmetric integrals.  相似文献   

17.
This note contains material to be presented to students in a first course in differential equations immediately after they have completed studying first-order differential equations and their applications. The purpose of presenting this material is four-fold: to review definitions studied previously; to provide a historical context which cites the contributions of several well-known mathematicians and also highlights their relationships to and interactions with one another, to lay the ground work for superposition theorems for solutions to linear differential equations that will be proven a short time later; and to illustrate one of the major differences between the type of results one can obtain for linear differential equations versus nonlinear differential equations.  相似文献   

18.
The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with It?o’s stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations. The existence and uniqueness results of the general FBSDEs are obtained. In the framework of the general FBSDEs in this paper, the explicit form of the optimal control for linearquadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained.  相似文献   

19.
The following problems of the analytic theory of differential equations are considered: Hilbert’s 21st problem for Fuchsian systems of linear differential equations, the Birkhoff normal form problem for systems of linear differential equations with irregular singularities, and the classification problem for isomonodromic deformations of Fuchsian systems.  相似文献   

20.
We obtain a sufficient condition for the absence of tangent transformations admitted by quasilinear differential equations of second order and a sufficient condition for the linear autonomy of the operators of the Lie group of transformations admitted by weakly nonlinear differential equations of second order. We prove a theorem concerning the structure of conservation laws of first order for weakly nonlinear differential equations of second order. We carry out the classification by first-order conservation laws for linear differential equations of second order with two independent variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号