首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
刘华宁  张文鹏 《数学学报》2006,49(5):999-100
本文给出了广义Dedekind和与Hardy和的定义,研究了广义Dedekind和的算术性质,并把Hardy和表示成广义Dedekind和的形式.提出了广义Subrahmanyam等式和Knopp定理,并给出了证明.  相似文献   

2.
利用广义p-值和广义置信区间的概念,研究了Panel模型中未知参数的检验和置信区间问题.对于回归系数,分别考虑了单个情形和多个线性无关情形下的检验和置信区间问题,得到了精确检验和置信区间.对于方差分量,研究了其任意线性组合的检验和置信区间问题,建立了精确检验和置信区间.基于广义p-值和广义置信区间,获取精确检验和置信区间的方法具有计算方便、易应用于小样本问题的特点.最后,分别从理论和数值上研究了这些精确检验和置信区间的统计性质.  相似文献   

3.
研究了一类具被动免疫的流行病模型,考虑到了各仓室人口的增长,结合中心流形理论和参数扰动得到了系统极限环和混沌的存在性,并作了数值模拟和仿真.  相似文献   

4.
【背景】苏科版八年级数学(上)学生学习了一次函数,学生对一次函数的概念、图像、性质和应用有了一定的认识和理解,尤其对一次函数应用题的数形结合做了重点探究.但在教学性考试中,教师和学生遇到了问题,在探究解决问题的过程中,有了更深的认识和体会.  相似文献   

5.
2000年,Hwang和Li提出了一个新的智能卡远程用户认证方案,随后Chan和Cheng对该方案进行了成功的攻击.最近Shen,Lin和Hwang针对该方案提出了一种不同的攻击方法,并提供了一个改进方案用于抵御这些攻击.2003年,Leung等认为Shen-Lin-Hwang改进方案仍然不能抵御Chan和Cheng的攻击,他们用改进后的Chang-Hwang攻击方法进行了攻击.文中主要在Hwang-Li方案的基础上,提出了一个新的远程用户认证方案,该方案主要在注册阶段和登录阶段加强了安全性,抵御了类似Chan-Cheng和Chang-Hwang的攻击.  相似文献   

6.
覆盖空间及粗糙集与拓扑的统一   总被引:3,自引:0,他引:3  
引入覆盖空间,定义了其邻域、内部、闭包、测度等概念,研究了它们的性质.得出了粗糙集近似空间和拓扑空间都是具体覆盖空间的重要结论,从而用覆盖空间统一了粗糙集和拓扑.利用覆盖空间,得到了粗糙集和拓扑中更深刻的性质,从算子论和集合论的角度丰富和深化了粗糙集与拓扑的内容.  相似文献   

7.
曾志勇 《数学之友》2017,(20):98-101
217年福建省中考实行全省“一张卷”,分析数学试卷(以下简称“试卷”)发现,试卷遵循《义务教育数学课程标准(2011年版)》要求,以《福建省初中学科教学与考试指导意见·数学》为依据,立足基础,以能力考查为导向,“关注了数学概念的理解和解释,关注了数学规则的选择和运用,关注了数学问题的发现和解决”,展现了数学的科学价值和人文价值.试题兼具基础性和综合性,立意高,亮点多,对知识和能力实现了多角度、多层次地考查,有效地全面检测了学生的数学核心素养.  相似文献   

8.
一类具密度制约SIS模型的全局稳定性和周期性   总被引:1,自引:0,他引:1  
研究了一类具密度制约和双线性传染率的S IS传染病模型,考虑到了实际中对易感者和传染者的控制,得到了地方病平衡点的全局渐近稳定性和系统的周期性,并给出了生物学解释和仿真.  相似文献   

9.
推行高等数学目标教学法 培养创造性数学思维能力   总被引:2,自引:1,他引:1  
阐述了高等数学教学改革的必要性和迫切性 .提出了一种新的教学方法 :目标教学法 ,给出了它的内容和具体实施方案 .论述了培养学生创造性思维的必要性和重要性 .结合例子 ,叙述了在教学过程中培养学生发散思维和逆向思维的方法 .通过教学实践 ,论证了此教学法取得了很好效果 ,并具有很好的推广价值  相似文献   

10.
假定需求是价格的函数,首先研究了非品牌专营下供应链的最优价格决策和最优批量决策,然后研究了品牌专营下供应商、零售商价格和批量的最优决策.建立了供应商优先决策的Stackelberg博弈模型,通过求解得到了该博弈问题均衡解,即得到了供应商控制的品牌产品最优零售价格和零售商控制的最优订货批量.最后将该模型应用于一个实例中,比较了非品牌专营下和品牌专营下最优决策的不同和供应链利润的不同,品牌专营提高了供应链整体的利润以及供应商自身利润占整个供应链利润的比例.  相似文献   

11.
该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题 u'+a (t ) f (u)=0, t∈(0, 1), u(0)=0, u(1)=∑i =1α i u ( ξ i ) 正解的存在性. 其中ξ i∈ (0,1),α i∈ [0,∞), 且满足∑i=1αiξ i <1.α∈C([0,1], [0,)),f∈C ([0,∞), [0,∞)).  相似文献   

12.
Vizing and Behzad independently conjectured that every graph is (Δ + 2)-totally-colorable, where Δ denotes the maximum degree of G. This conjecture has not been settled yet even for planar graphs. The only open case is Δ = 6. It is known that planar graphs with Δ ≥ 9 are (Δ + 1)-totally-colorable. We conjecture that planar graphs with 4 ≤ Δ ≤ 8 are also (Δ + 1)-totally-colorable. In addition to some known results supporting this conjecture, we prove that planar graphs with Δ = 6 and without 4-cycles are 7-totally-colorable. Supported by the Natural Science Foundation of Department of Education of Zhejiang Province, China, Grant No. 20070441.  相似文献   

13.
Summary It follows from [1], [4] and [7] that any closed <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>n$-codimensional subspace ($n \ge 1$ integer) of a real Banach space $X$ is the kernel of a projection $X \to X$, of norm less than $f(n) + \varepsilon$~($\varepsilon > 0$ arbitrary), where \[ f (n) = \frac{2 + (n-1) \sqrt{n+2}}{n+1}. \] We have $f(n) < \sqrt{n}$ for $n > 1$, and \[ f(n) = \sqrt{n} - \frac{1}{\sqrt{n}} + O \left(\frac{1}{n}\right). \] (The same statement, with $\sqrt{n}$ rather than $f(n)$, has been proved in [2]. A~small improvement of the statement of [2], for $n = 2$, is given in [3], pp.~61--62, Remark.) In [1] for this theorem a deeper statement is used, on approximations of finite rank projections on the dual space $X^*$ by adjoints of finite rank projections on $X$. In this paper we show that the first cited result is an immediate consequence of the principle of local reflexivity, and of the result from [7].  相似文献   

14.
Summary We are interested in the study of the sum <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>E+F$ and the product $E*F$, when $E$ and $F$ are of the form $s_{\xi}$, or $s_{\xi}^{\circ}$, or $s_{\xi}^{(c)}$. Then we deal with the identities $(E+F) (\Delta^{q}) \eg E$ and $(E+F) (\Delta^{q}) \eg F$. Finally we consider matrix transformations in the previous sets and study the identities $\big((E^{p_{1}}+F^{p_{2}}) (\Delta^{q}),s_{\mu}\big) \eg S_{\alpha^{p_{1}}\pl \beta^{p_{2}},\mu}$ and $\big(E+F(\Delta^{q}),s_{\gamma}\big) \eg S_{\beta,\gamma}$.  相似文献   

15.
Summary The problem of covering a circle, a square or a regular triangle with <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>n$ congruent circles of minimum diameter (the {\it circle covering} problem) has been investigated by a number of authors and the smallest diameter has been found for several values of $n$. This paper is devoted to the study of an analogous problem, the {\it diameter covering} problem, in which the shape and congruence of the covering pieces is relaxed and -- invariably -- the maximal diameter of the pieces is minimized. All cases are considered when the solution of the first problem is known and in all but one case the diameter covering problem is solved.  相似文献   

16.
Summary Let <InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>M^n$ be a Riemannian $n$-manifold with $n\ge 4$. Consider the Riemannian invariant $\sigma(2)$ defined by <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \sigma(2)=\tau-\frac{(n-1)\min \Ric}{n^2-3n+4}, $$ where $\tau$ is the scalar curvature of $M^n$ and $(\min \Ric)(p)$ is the minimum of the Ricci curvature of $M^n$ at $p$. In an earlier article, B. Y. Chen established the following sharp general inequality: $$ \sigma(2)\le \frac{n^2{(n-2)}^2}{2(n^2-3n+4)}H^2 $$ for arbitrary $n$-dimensional conformally flat submanifolds in a Euclidean space, where $H^2$ denotes the squared mean curvature. The main purpose of this paper is to completely classify the extremal class of conformally flat submanifolds which satisfy the equality case of the above inequality. Our main result states that except open portions of totally geodesic $n$-planes, open portions of spherical hypercylinders and open portion of round hypercones, conformally flat submanifolds satifying the equality case of the inequality are obtained from some loci of $(n-2)$-spheres around some special coordinate-minimal surfaces.  相似文献   

17.
Summary We introduce and investigate three topological spaces <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>(X,\Lambda_m)$, $(X,\Lambda_{mc}^*)$ and $(X,\Lambda_{g\Lambda_m})$ by using $\Lambda_m$-sets, $(\Lambda, m)$-closed sets and generalized $\Lambda_m$-sets, respectively. Especially, we study properties of weak separation axioms on these topological spaces. The investigation enables us to obtain a unified theory of notions related to $\Lambda$-sets [21], semi-$\Lambda$-sets [5] and pre-$\Lambda$-sets [15] in topological spaces.  相似文献   

18.
Summary For real connected nilpotent groups, 7 is the lowest dimension where there are infinitely many non-isomorphic groups, and also where some groups (indeed, uncountably many) have no discrete cocompact subgroups. In [21] one infinite family <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\mathcal{G}$ of 7-dimensional groups was identified and classified. Discrete cocompact subgroups H were identified for some groups in $\mathcal{G}$ in [10], along with simple quotients of $C^{*}(\mathrm{H})$ and relevant flows $(\mathrm{H}_3,\mathbf{T}^3)$. In this paper, such H and attributes are determined for more groups in $\mathcal{G}$; in particular, the members of $\mathcal{G}$ that admit discrete cocompact subgroups are identified precisely. In achieving some of these results, we consider other known ways of classifying the groups in $\mathcal{G}$, and also the classification of the analogous family of complex groups.  相似文献   

19.
Summary Given a real-valued function <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\mu(x,y)$ of bounded variation in the sense of Hardy and Krause on the square $[0, 2\pi]\times [0, 2\pi]$, the sequence <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \mu_{m,n}:=\int^{2\pi}_0 \int^{2\pi}_0 e^{i(mx+ny)} \, d_x \, d_y \mu(x,y), \quad (m,n)\in \bZ^2, $$ may be called the sequence of trigonometric moment constants with respect to $\mu(x,y)$. We discuss the uniqueness of the expression of the sequence $\{\mu_{m,n}\}$ in terms of the function $\mu(x,y)$.  相似文献   

20.
Summary Recently, Goubin, Mauduit, Rivat and Sárk?zy have given three constructions for large families of binary sequences. In each of these constructions the sequence is defined by modulo <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>p$ congruences where $p$ is a prime number. In this paper the three constructions are extended to the case when the modulus is of the form $pq$ where $p$, $q$ are two distinct primes not far apart (note that the well-known Blum-Blum-Shub and RSA constructions for pseudorandom sequences are also of this type). It is shown that these modulo $pq$ constructions also have certain strong pseudorandom properties but, e.g., the (``long range') correlation of order $4$ is large (similar phenomenon may occur in other modulo $pq$ constructions as well).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号