首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Summary We consider a model of random walk on ℤν, ν≥2, in a dynamical random environment described by a field ξ={ξ t (x): (t,x)∈ℤν+1}. The random walk transition probabilities are taken as P(X t +1= y|X t = x t =η) =P 0( yx)+ c(yx;η(x)). We assume that the variables {ξ t (x):(t,x) ∈ℤν+1} are i.i.d., that both P 0(u) and c(u;s) are finite range in u, and that the random term c(u;·) is small and with zero average. We prove that the C.L.T. holds almost-surely, with the same parameters as for P 0, for all ν≥2. For ν≥3 there is a finite random (i.e., dependent on ξ) correction to the average of X t , and there is a corresponding random correction of order to the C.L.T.. For ν≥5 there is a finite random correction to the covariance matrix of X t and a corresponding correction of order to the C.L.T.. Proofs are based on some new L p estimates for a class of functionals of the field. Received: 4 January 1996/In revised form: 26 May 1997  相似文献   

2.
We investigate a diffusion process ξ(t) with absorption defined in a thin domainD ε ={(x,t)∶εG 1 (t)<x<εG 2 (t), t≥0}. We obtain the complete decomposition of the sojourn probability of ξ(t) inD ε with respect to ε→0. Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 9, pp. 1155–1164, September, 1999.  相似文献   

3.
The stochastic equation dX t =dS t +a(t,X t )dt, t≥0, is considered where S is a one-dimensional Levy process with the characteristic exponent ψ(ξ),ξ∈ℝ. We prove the existence of (weak) solutions for a bounded, measurable coefficient a and any initial value X 0=x 0∈ℝ when (ℛeψ(ξ))−1=o(|ξ|−1) as |ξ|→∞. These conditions coincide with those found by Tanaka, Tsuchiya and Watanabe (J. Math. Kyoto Univ. 14(1), 73–92, 1974) in the case of a(t,x)=a(x). Our approach is based on Krylov’s estimates for Levy processes with time-dependent drift. Some variants of those estimates are derived in this note.  相似文献   

4.
In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0are proved, where {N(t); t≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.  相似文献   

5.
Let ΓSL 2(ℝ) be a Fuchsian group of the first kind. For a character χ of Γ→ℂ× of finite order, we define the usual space S m (Γ,χ) of cuspidal modular forms of weight m≥0. For each ξ in the upper half–plane and m≥3, we construct cuspidal modular forms Δ k,m,ξ,χ S m (Γ,χ) (k≥0) which represent the linear functionals f?\fracdkfdzk|z=xf\mapsto\frac{d^{k}f}{dz^{k}}|_{z=\xi} in terms of the Petersson inner product. We write their Fourier expansion and use it to write an expression for the Ramanujan Δ-function. Also, with the aid of the geometry of the Riemann surface attached to Γ, for each non-elliptic point ξ and integer m≥3, we construct a basis of S m (Γ,χ) out of the modular forms Δ k,m,ξ ,χ (k≥0). For Γ=Γ 0(N), we use this to write a matrix realization of the usual Hecke operators T p for S m (N,χ).  相似文献   

6.
Age-dependent branching processes in random environments   总被引:4,自引:0,他引:4  
We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ0,ξ1,...) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξn) on R , and reproduce independently new particles according to a probability law p(ξn) on N. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean EξZ(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.  相似文献   

7.
Let ξ(t) be an almost lower semicontinuous integer-valued process with moment generating function of the negative parts of jumps
xk:E[ zxk / xk < 0 ] = \frac1 - bz - b,   0 \leqslant b < 1. {\xi_k}:E\left[ {{{{{z^{{\xi_k}}}}} \left/ {{{\xi_k} < 0}} \right.}} \right] = \frac{{1 - b}}{{z - b}},\,\,\,0 \leqslant b < 1.  相似文献   

8.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

9.
Let (A,D(A)) be the infinitesimal generator of a Feller semigroup such that C c (ℝ n )⊂D(A) and A|C c (ℝ n ) is a pseudo-differential operator with symbol −p(x,ξ) satisfying |p(•,ξ)|c(1+|ξ|2) and |Imp(x,ξ)|≤c 0Rep(x,ξ). We show that the associated Feller process {X t } t ≥0 on ℝ n is a semimartingale, even a homogeneous diffusion with jumps (in the sense of [21]), and characterize the limiting behaviour of its trajectories as t→0 and ∞. To this end, we introduce various indices, e.g., β x :={λ>0:lim |ξ|→∞ | x y |≤2/|ξ||p(y,ξ)|/|ξ|λ=0} or δ x :={λ>0:liminf |ξ|→∞ | x y |≤2/|ξ| |ε|≤1|p(y,|ξ|ε)|/|ξ|λ=0}, and obtain a.s. (ℙ x ) that lim t →0 t −1/λ s t |X s x|=0 or ∞ according to λ>β x or λ<δ x . Similar statements hold for the limit inferior and superior, and also for t→∞. Our results extend the constant-coefficient (i.e., Lévy) case considered by W. Pruitt [27]. Received: 21 July 1997 / Revised version: 26 January 1998  相似文献   

10.
11.
Given an extremal process X: [0,∞)→[0,∞)d with lower curve C and associated point process N={(tk, Xk):k≥0}, tk distinct and Xk independent, given a sequence ζ n =(τ n , ξ n ), n≥1, of time-space changes (max-automorphisms of [0,∞)d+1), we study the limit behavior of the sequence of extremal processes Yn(t)=ξ n -1 ○ X ○ τn(t)=Cn(t) V max {ξ n -1 ○ Xk: tk ≤ τn(t){ ⇒ Y under a regularity condition on the norming sequence ζn and asymptotic negligibility of the max-increments of Yn. The limit class consists of self-similar (with respect to a group ηα=(σα, Lα), α>0, of time-space changes) extremal processes. By self-similarity here we mean the property Lα ○ Y(t) = d Y ○ αα(t) for all α>0. The univariate marginals of Y are max-self-decomposable. If additionally the initial extremal process X is assumed to have homogeneous max-increments, then the limit process is max-stable with homogeneous max-increments. Supported by the Bulgarian Ministry of Education and Sciences (grant No. MM 234/1996). Proceedings of the Seminar on Stability Problems for Stochastic Models, Hajdúszoboszló, Hungary, 1997, Part I.  相似文献   

12.
We prove that integral functionals, whose integrands are bounded functions of a Wiener process on a cylinder, weakly converge to the processw 1(τ(t)), τ(t) = β1 t + (β2 − β1)mes {s:w 2(s)≥0,s<t}, wherew 1(t andw 2(t) are independent one-dimensional Wiener processes, β1 and β2 are nonrandom values, and β2≥β1≥0. Kiev University, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 46, No. 6, pp. 765–768, June, 1994.  相似文献   

13.
For a process X(t)=Σ j=1 M g j (t j (), where gj(t) are nonrandom given functions, is a stationary vector-valued Gaussian process, Eξk(t) = 0, and Eξk(0) Eξl(τ) = r kl(τ), we construct an estimate for the functions r kl(τ) on the basis of observations X(t), t ∈ [0, T]. We establish conditions for the asymptotic normality of as T → ∞. We consider the problem of the optimal choice of parameters of the estimate depending on observations. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 7, pp. 937–947, July, 1998.  相似文献   

14.
Let ξ, ξ1, ξ2, ... be independent identically distributed random variables, and S n :=Σ j=1 n j , $ \bar S $ \bar S := sup n≥0 S n . If Eξ = −a < 0 then we call transient those phenomena that happen to the distribution $ \bar S $ \bar S as a → 0 and $ \bar S $ \bar S tends to infinity in probability. We consider the case when Eξ fails to exist and study transient phenomena as a → 0 for the following two random walk models:
1.  The first model assumes that ξ j can be represented as ξ j = ζ j + αη j , where ζ1, ζ 2 , ... and η 1, η 2, ... are two independent sequences of independent random variables, identically distributed in each sequence, such that supn≥0Σ j=1 n ζ j = ∞, sup n≥0Σ j=1 n η j < ∞, and $ \bar S $ \bar S < ∞ almost surely.
2.  In the second model we consider a triangular array scheme with parameter a and assume that the right tail distribution P j t) ∼ V (t) as t→∞ depends weakly on a, while the left tail distribution is P j < −t) = W(t/a), where V and W are regularly varying functions and $ \bar S $ \bar S < ∞ almost surely for every fixed α > 0.
We obtain some results for identically and differently distributed ξ j .  相似文献   

15.
Itiswellknownthattheexistenceofalmostperiodicsolutionsiscloselyrelatedtothestabilityofsolutions.Forfunctionaldifferentialequationswithinfinitedelay,Y.Hin.[5'6]studiedtheproblemsontheexistenceofalmostperiodicsolutionsandthestability.However,therearefewpapersll2]dealingwithneutralfunctionaldifferentialequationswithinfinitedelay.Inthepresentpaper,forneutralfunctionaldifferentialequationswithinfinitedelay,weprovetheinherencetheoremfortheuniformlystableoperatorD(t),definethestabilitywithrespecttot…  相似文献   

16.
We say that n independent trajectories ξ1(t),…,ξ n (t) of a stochastic process ξ(t)on a metric space are asymptotically separated if, for some ɛ > 0, the distance between ξ i (t i ) and ξ j (t j ) is at least ɛ, for some indices i, j and for all large enough t 1,…,t n , with probability 1. We prove sufficient conitions for asymptotic separationin terms of the Green function and the transition function, for a wide class of Markov processes. In particular,if ξ is the diffusion on a Riemannian manifold generated by the Laplace operator Δ, and the heat kernel p(t, x, y) satisfies the inequality p(t, x, x) ≤ Ct −ν/2 then n trajectories of ξ are asymptotically separated provided . Moreover, if for some α∈(0, 2)then n trajectories of ξ(α) are asymptotically separated, where ξ(α) is the α-process generated by −(−Δ)α/2. Received: 10 June 1999 / Revised version: 20 April 2000 / Published online: 14 December 2000 RID="*" ID="*" Supported by the EPSRC Research Fellowship B/94/AF/1782 RID="**" ID="**" Partially supported by the EPSRC Visiting Fellowship GR/M61573  相似文献   

17.
Moderate Deviations for Random Sums of Heavy-Tailed Random Variables   总被引:2,自引:0,他引:2  
Let {Xn;n≥ 1} be a sequence of independent non-negative random variables with common distribution function F having extended regularly varying tail and finite mean μ = E(X1) and let {N(t); t ≥0} be a random process taking non-negative integer values with finite mean λ(t) = E(N(t)) and independent of {Xn; n ≥1}. In this paper, asymptotic expressions of P((X1 +… +XN(t)) -λ(t)μ 〉 x) uniformly for x ∈[γb(t), ∞) are obtained, where γ〉 0 and b(t) can be taken to be a positive function with limt→∞ b(t)/λ(t) = 0.  相似文献   

18.
Let (B s , s≥ 0) be a standard Brownian motion and T 1 its first passage time at level 1. For every t≥ 0, we consider ladder time set ℒ (t) of the Brownian motion with drift t, B (t) s = B s + ts, and the decreasing sequence F(t) = (F 1(t), F 2(t), …) of lengths of the intervals of the random partition of [0, T 1] induced by ℒ (t) . The main result of this work is that (F(t), t≥ 0) is a fragmentation process, in the sense that for 0 ≤t < t′, F(t′) is obtained from F(t) by breaking randomly into pieces each component of F(t) according to a law that only depends on the length of this component, and independently of the others. We identify the fragmentation law with the one that appears in the construction of the standard additive coalescent by Aldous and Pitman [3]. Received: 19 February 1999 / Revised version: 17 September 1999 /?Published online: 31 May 2000  相似文献   

19.
Let {ξ(t), tT} be a differentiable (in the mean-square sense) Gaussian random field with E ξ(t) ≡ 0, D ξ(t) ≡ 1, and continuous trajectories defined on the m-dimensional interval T ì \mathbbRm T \subset {\mathbb{R}^m} . The paper is devoted to the problem of large excursions of the random field ξ. In particular, the asymptotic properties of the probability P = P{−v(t) < ξ(t) < u(t), tT}, when, for all tT, u(t), v(t) ⩾ χ, χ → ∞, are investigated. The work is a continuation of Rudzkis research started in [R. Rudzkis, Probabilities of large excursions of empirical processes and fields, Sov. Math., Dokl., 45(1):226–228, 1992]. It is shown that if the random field ξ satisfies certain smoothness and regularity conditions, then P = eQ  + Qo(1), where Q is a certain constructive functional depending on u, v, T, and the matrix function R(t) = cov(ξ′(t), ξ′(t)).  相似文献   

20.
We prove that the identity
holds for all directed graphs G and H. Similar bounds for the usual chromatic number seem to be much harder to obtain: It is still not known whether there exists a number n such that χ(G×H) ≥ 4 for all directed graphs G, H with χ(G) ≥ χ(H) ≥ n. In fact, we prove that for every integer n ≥ 4, there exist directed graphs Gn, Hn such that χ(Gn) = n, χ(Hn) = 4 and χ(Gn×Hn) = 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号