首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of approximating the unknown density \(u\in L^2(\Omega ,\lambda )\) of a measure \(\mu \) on \(\Omega \subset \mathbb {R}^n\) , absolutely continuous with respect to some given reference measure \(\lambda \) , only from the knowledge of finitely many moments of \(\mu \) . Given \(d\in \mathbb {N}\) and moments of order \(d\) , we provide a polynomial \(p_d\) which minimizes the mean square error \(\int (u-p)^2d\lambda \) over all polynomials \(p\) of degree at most \(d\) . If there is no additional requirement, \(p_d\) is obtained as solution of a linear system. In addition, if \(p_d\) is expressed in the basis of polynomials that are orthonormal with respect to \(\lambda \) , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover \(p_d\rightarrow u\) in \(L^2(\Omega ,\lambda )\) as \(d\rightarrow \infty \) . In general nonnegativity of \(p_d\) is not guaranteed even though \(u\) is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing \(p_d\ge 0\) that minimizes \(\int (u-p)^2d\lambda \) now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating \(u\) .  相似文献   

2.
Given an undirected graph \(G=(V,E)\) with a terminal set \(S \subseteq V\) , a weight function on terminal pairs, and an edge-cost \(a: E \rightarrow \mathbf{Z}_+\) , the \(\mu \) -weighted minimum-cost edge-disjoint \(S\) -paths problem ( \(\mu \) -CEDP) is to maximize \(\sum \nolimits _{P \in \mathcal{P}} \mu (s_P,t_P) - a(P)\) over all edge-disjoint sets \(\mathcal{P}\) of \(S\) -paths, where \(s_P,t_P\) denote the ends of \(P\) and \(a(P)\) is the sum of edge-cost \(a(e)\) over edges \(e\) in \(P\) . Our main result is a complete characterization of terminal weights \(\mu \) for which \(\mu \) -CEDP is tractable and admits a combinatorial min–max theorem. We prove that if \(\mu \) is a tree metric, then \(\mu \) -CEDP is solvable in polynomial time and has a combinatorial min–max formula, which extends Mader’s edge-disjoint \(S\) -paths theorem and its minimum-cost generalization by Karzanov. Our min–max theorem includes the dual half-integrality, which was earlier conjectured by Karzanov for a special case. We also prove that \(\mu \) -EDP, which is \(\mu \) -CEDP with \(a = 0\) , is NP-hard if \(\mu \) is not a truncated tree metric, where a truncated tree metric is a weight function represented as pairwise distances between balls in a tree. On the other hand, \(\mu \) -CEDP for a truncated tree metric \(\mu \) reduces to \(\mu '\) -CEDP for a tree metric \(\mu '\) . Thus our result is best possible unless P = NP. As an application, we obtain a good approximation algorithm for \(\mu \) -EDP with “near” tree metric \(\mu \) by utilizing results from the theory of low-distortion embedding.  相似文献   

3.
Let \(\mathfrak {g}\) be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \(\mathfrak {h}\) and the Weyl group \(W\) . Let \(P_+\) be the set of dominant integral weights. For \(\lambda \in P_+\) , let \(L(\lambda )\) be the integrable, highest weight (irreducible) representation of \(\mathfrak {g}\) with highest weight \(\lambda \) . For a positive integer \(s\) , define the saturated tensor semigroup as $$\begin{aligned} \Gamma _s:= \{(\lambda _1, \dots , \lambda _s,\mu )\in P_+^{s+1}: \exists \, N\ge 1 \,\text {with}\,L(N\mu )\subset L(N\lambda _1)\otimes \dots \otimes L(N\lambda _s)\}. \end{aligned}$$ The aim of this paper is to begin a systematic study of \(\Gamma _s\) in the infinite dimensional symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequalities satisfied by \(\Gamma _s\) . These inequalities are indexed by products in \(H^*(G^{\mathrm{min }}/B; \mathbb {Z})\) for \(B\) the standard Borel subgroup, where \(G^{\mathrm{min }}\) is the ‘minimal’ Kac-Moody group with Lie algebra \(\mathfrak {g}\) . The proof relies on the Kac-Moody analogue of the Borel-Weil theorem and Geometric Invariant Theory (specifically the Hilbert-Mumford index). In the case that \(\mathfrak {g}\) is affine of rank 2, we show that these inequalities are necessary and sufficient. We further prove that any integer \(d>0\) is a saturation factor for \(A^{(1)}_1\) and 4 is a saturation factor for \(A^{(2)}_2\) .  相似文献   

4.
We consider a general family of regularized models for incompressible two-phase flows based on the Allen–Cahn formulation in \(n\) -dimensional compact Riemannian manifolds for \(n=2,3\) . The system we consider consists of a regularized family of Navier–Stokes equations (including the Navier–Stokes- \(\alpha \) -like model, the Leray- \(\alpha \) model, the modified Leray- \(\alpha \) model, the simplified Bardina model, the Navier–Stokes–Voight model, and the Navier–Stokes model) for the fluid velocity \(u\) suitably coupled with a convective Allen–Cahn equation for the order (phase) parameter \(\phi \) . We give a unified analysis of the entire three-parameter family of two-phase models using only abstract mapping properties of the principal dissipation and smoothing operators and then use assumptions about the specific form of the parameterizations, leading to specific models, only when necessary to obtain the sharpest results. We establish existence, stability, and regularity results and some results for singular perturbations, which as special cases include the inviscid limit of viscous models and the \(\alpha \rightarrow 0\) limit in \(\alpha \) models. Then we show the existence of a global attractor and exponential attractor for our general model and establish precise conditions under which each trajectory \(\left( u,\phi \right) \) converges to a single equilibrium by means of a Lojasiewicz–Simon inequality. We also derive new results on the existence of global and exponential attractors for the regularized family of Navier–Stokes equations and magnetohydrodynamics models that improve and complement the results of Holst et al. (J Nonlinear Sci 20(5):523–567, 2010). Finally, our analysis is applied to certain regularized Ericksen–Leslie models for the hydrodynamics of liquid crystals in \(n\) -dimensional compact Riemannian manifolds.  相似文献   

5.
Let \(X\) be a compact Kähler manifold of dimension \(k\!\le \! 4\) and \(f{:}X\!\rightarrow \! X\) a pseudo-automorphism. If the first dynamical degree \(\lambda _1(f)\) is a Salem number, we show that either \(\lambda _1(f)=\lambda _{k-1}(f)\) or \(\lambda _1(f)^2=\lambda _{k-2}(f)\) . In particular, if \({\dim }(X)=3\) then \(\lambda _1(f)=\lambda _2(f)\) . We use this to show that if \(X\) is a complex 3-torus and \(f\) is an automorphism of \(X\) with \(\lambda _1(f)>1\) , then \(f\) has a non-trivial equivariant holomorphic fibration if and only if \(\lambda _1(f)\) is a Salem number. If \(X\) is a complex 3-torus having an automorphism \(f\) with \(\lambda _1(f)=\lambda _2(f)>1\) but is not a Salem number, then the Picard number of \(X\) must be 0, 3 or 9, and all these cases can be realized.  相似文献   

6.
Daniel Daners 《Positivity》2014,18(2):235-256
By analysing some explicit examples we investigate the positivity and the non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator associated with the operator \(\varDelta +\lambda I\) as \(\lambda \) varies. It is known that the semigroup is positive if \(\lambda <\lambda _1\) , where \(\lambda _1\) is the principal eigenvalue of \(-\varDelta \) with Dirichlet boundary conditions. We show that it is possible for the semigroup to be non-positive, eventually positive or positive and irreducible depending on \(\lambda >\lambda _1\) .  相似文献   

7.
8.
The Cartan–Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan–Hartogs domain \(\Omega ^{B^{d_0}}(\mu )\) endowed with the canonical metric \(g(\mu ),\) we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space \(\mathcal {H}_{\alpha }\) of square integrable holomorphic functions on \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) \) with the weight \(\exp \{-\alpha \varphi \}\) (where \(\varphi \) is a globally defined Kähler potential for \(g(\mu )\) ) for \(\alpha >0\) , and, furthermore, we give an explicit expression of the Rawnsley’s \(\varepsilon \) -function expansion for \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) .\) Secondly, using the explicit expression of the Rawnsley’s \(\varepsilon \) -function expansion, we show that the coefficient \(a_2\) of the Rawnsley’s \(\varepsilon \) -function expansion for the Cartan–Hartogs domain \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) \) is constant on \(\Omega ^{B^{d_0}}(\mu )\) if and only if \(\left( \Omega ^{B^{d_0}}(\mu ), g(\mu )\right) \) is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda.  相似文献   

9.
Let \(G\) be a locally compact topological group, acting measurably on some Borel spaces \(S\) and \(T\) , and consider some jointly stationary random measures \(\xi \) on \(S\times T\) and \(\eta \) on \(S\) such that \(\xi (\cdot \times T)\ll \eta \) a.s. Then there exists a stationary random kernel \(\zeta \) from \(S\) to \(T\) such that \(\xi =\eta \otimes \zeta \) a.s. This follows from the existence of an invariant kernel \(\varphi \) from \(S\times {\mathcal {M}}_{S\times T}\times {\mathcal {M}}_S\) to \(T\) such that \(\mu =\nu \otimes \varphi (\cdot ,\mu ,\nu )\) whenever \(\mu (\cdot \times T)\ll \nu \) . Also included are some related results on stationary integration, absolute continuity, and ergodic decomposition.  相似文献   

10.
It was proved recently that a super-simple orthogonal array (SSOA) of strength \(t\) and index \(\lambda \ge 2\) is equivalent to a minimum detecting array (DTA). In computer software tests in component-based systems, such a DTA can be used to generate test suites that are capable of locating \(d=\lambda -1\) \(t\) -way interaction faults and detect whether there are more than \(d\) interaction faults. It is proved in this paper that an SSOA of strength \(t=3\) , index \(\lambda \ge 2\) and degree \(k=5\) , or an SSOA \(_{\lambda }(3,5,v)\) , exists if and only if \(\lambda \le v\) excepting possibly a handful of cases.  相似文献   

11.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

12.
We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\) . Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\) -convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\) , we show that for every probability measure \(\mu \) on \(X\) , there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \) , and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\) -almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\) , then \(S\) is necessarily a \(\mu \) -measure preserving involution (i.e., \(S^2=I\) ) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \) -almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.  相似文献   

13.
For three coadjoint orbits \(\mathcal {O}_1, \mathcal {O}_2\) and \(\mathcal {O}_3\) in \(\mathfrak {g}^*\) , the Corwin–Greenleaf function \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) is given by the number of \(G\) -orbits in \(\{(\lambda , \mu ) \in \mathcal {O}_1 \times \mathcal {O}_2 \, : \, \lambda + \mu \in \mathcal {O}_3 \}\) under the diagonal action. In the case where \(G\) is a simple Lie group of Hermitian type, we give an explicit formula of \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) for coadjoint orbits \(\mathcal {O}_1\) and \(\mathcal {O}_2\) that meet \(\left( [\mathfrak {k}, \mathfrak {k}] + \mathfrak {p}\right) ^{\perp }\) , and show that the formula is regarded as the ‘classical limit’ of a special case of Kobayashi’s multiplicity-free theorem (Progr. Math. 2007) in the branching law to symmetric pairs.  相似文献   

14.
Consider a multivalued formal function of the type 1 $$\begin{aligned} \varphi (s) : = \sum _{j=0}^k\,c_j(s).s^{\lambda + m_j}.(\mathrm{Log}\,s)^j, \end{aligned}$$ where \(\lambda \) is a positive rational number, \(c_j\) is in \({{\mathrm{\mathbb {C}}}}[[s]]\) and \(m_j \in \mathbb {N}\) for \(j \in [0,k-1]\) . The theme associated with such a \(\varphi \) is the “minimal filtered integral equation” satisfied by \(\varphi \) , in a sense which is made precise in this article. We study such objects and show that their isomorphism classes may be characterized by a finite set of complex numbers, when we assume the Bernstein polynomial of \(\varphi \) to be fixed. For a given \(\lambda \) , to fix the Bernstein polynomial is equivalent to fix a finite set of integers associated with the logarithm of the monodromy in the geometric situation described below. Our aim is to construct some analytic invariants, for instance in the following situation, let \(f : X \rightarrow D\) be a proper holomorphic function defined on a complex manifold \(X\) with values in a disc \(D\) . We assume that the only critical value is \(0 \in D\) and we consider this situation as a degenerating family of compact complex manifolds to a singular compact complex space \(f^{-1}(0)\) . To a smooth \((p+1)\) -form \(\omega \) on \(X\) such that \(\mathrm{d}\omega = 0 = \mathrm{d}f \wedge \omega \) and to a vanishing \(p\) -cycle \(\gamma \) chosen in the generic fiber \(f^{-1}(s_0), s_0 \in D \setminus \{0\}\) , we associated a “vanishing period” \(F_{\gamma }(s) : = \int _{\gamma _s} \omega \big /\mathrm{d}f \) which has an asymptotic expansion at \(0\) of the form \((1)\) above, when \(\gamma \) is chosen in the spectral subspace of \(H_p(f^{-1}(s_0), {{\mathrm{\mathbb {C}}}})\) for the eigenvalue \(\mathrm{e}^{2i\pi .\lambda }\) of the monodromy of \(f\) . Here \((\gamma _s)_{s \in D^*}\) is the horizontal multivalued family of \(p\) -cycles in the fibers of \(f\) obtained from the choice of \(\gamma \) . The aim of this article was to study the module generated by such a \(\varphi \) over the algebra \(\tilde{\mathcal {A}}\) , which is the \(b\) -completion of the algebra \(\mathcal {A}\) generated by the operators \(\mathrm{a} : = \times s\) and \(\mathrm{b} : = \int _{0}^{s}\) .  相似文献   

15.
Consider an ergodic non-singular action \(\Gamma \curvearrowright B\) of a countable group on a probability space. The type of this action codes the asymptotic range of the Radon–Nikodym derivative, also called the ratio set. If \(\Gamma \curvearrowright X\) is a pmp (probability-measure-preserving) action, then the ratio set of the product action \(\Gamma \curvearrowright B\times X\) is contained in the ratio set of \(\Gamma \curvearrowright B\) . So we define the stable ratio set of \(\Gamma \curvearrowright B\) to be the intersection over all pmp actions \(\Gamma \curvearrowright X\) of the ratio sets of \(\Gamma \curvearrowright B\times X\) . By analogy, there is a notion of stable type which codes the stable ratio set of \(\Gamma \curvearrowright B\) . This concept is crucially important for the identification of the limit in pointwise ergodic theorems established by the author and Amos Nevo. Here, we establish a general criteria for a nonsingular action of a countable group on a probability space to have stable type \(III_\lambda \) for some \(\lambda >0\) . This is applied to show that the action of a non-elementary Gromov hyperbolic group on its boundary with respect to a quasi-conformal measure is not type \(III_0\) and, if it is weakly mixing, then it is not stable type \(III_0\) .  相似文献   

16.
We consider nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis-growth system $$\begin{aligned} \left\{ \begin{array}{l} u_t=\varepsilon u_{xx} -(uv_x)_x +ru -\mu u^2, \qquad x\in \Omega , \ t>0, \\ 0=v_{xx}-v+u, \qquad x\in \Omega , \ t>0, \end{array} \right. \quad (\star ) \end{aligned}$$ in \(\Omega :=(0,L)\subset \mathbb {R}\) with \(L>0, \varepsilon >0, r\ge 0\) and \(\mu >0\) , along with the corresponding limit problem formally obtained upon taking \(\varepsilon \searrow 0\) . For the latter hyperbolic–elliptic problem, we establish results on local existence and uniqueness within an appropriate generalized solution concept. In this context we shall moreover derive an extensibility criterion involving the norm of \(u(\cdot ,t)\) in \(L^\infty (\Omega )\) . This will enable us to conclude that in this case \(\varepsilon =0\) ,
  • if \(\mu \ge 1\) , then all solutions emanating from sufficiently regular initial data are global in time, whereas
  • if \(\mu <1\) , then some solutions blow-up in finite time.
The latter will reveal that the original parabolic–elliptic problem ( \(\star \) ), though known to possess no such exploding solutions, exhibits the following property of dynamical structure generation: given any \(\mu \in (0,1)\) , one can find smooth bounded initial data with the property that for each prescribed number \(M>0\) the solution of ( \(\star \) ) will attain values above \(M\) at some time, provided that \(\varepsilon \) is sufficiently small. In particular, this means that the associated carrying capacity given by \(\frac{r}{\mu }\) can be exceeded during evolution to an arbitrary extent. We finally present some numerical simulations that illustrate this type of solution behavior and that, moreover, inter alia, indicate that achieving large population densities is a transient dynamical phenomenon occurring on intermediate time scales only.  相似文献   

17.
Let \(Q\) be a fundamental domain of some full-rank lattice in \({\mathbb {R}}^d\) and let \(\mu \) and \(\nu \) be two positive Borel measures on \({\mathbb {R}}^d\) such that the convolution \(\mu *\nu \) is a multiple of \(\chi _Q\) . We consider the problem as to whether or not both measures must be spectral (i.e. each of their respective associated \(L^2\) space admits an orthogonal basis of exponentials) and we show that this is the case when \(Q = [0,1]^d\) . This theorem yields a large class of examples of spectral measures which are either absolutely continuous, singularly continuous or purely discrete spectral measures. In addition, we propose a generalized Fuglede’s Conjecture for spectral measures on \({\mathbb {R}}^1\) and we show that it implies the classical Fuglede’s Conjecture on \({\mathbb {R}}^1\) .  相似文献   

18.
Let \(A\) and \(B\) be two points of \(\mathrm{{PG}}(2,q^n)\) , and let \(\Phi \) be a collineation between the pencils of lines with vertices \(A\) and \(B\) . In this paper, we prove that the set of points of intersection of corresponding lines under \(\Phi \) is either the union of a scattered \(\mathrm{{GF}}(q)\) -linear set of rank \(n+1\) with the line \(AB\) or the union of \(q-1\) scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n\) with \(A\) and \(B\) . We also determine the intersection configurations of two scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n+1\) of \(\mathrm{{PG}}(2,q^n)\) both meeting the line \(AB\) in a \(\mathrm{{GF}}(q)\) -linear set of pseudoregulus type with transversal points \(A\) and \(B\) .  相似文献   

19.
A \(k\times u\lambda \) matrix \(M=[d_{ij}]\) with entries from a group \(U\) of order \(u\) is called a \((u,k,\lambda )\) -difference matrix over \(U\) if the list of quotients \(d_{i\ell }{d_{j\ell }}^{-1}, 1 \le \ell \le u\lambda ,\) contains each element of \(U\) exactly \(\lambda \) times for all \(i\ne j.\) Jungnickel has shown that \(k \le u\lambda \) and it is conjectured that the equality holds only if \(U\) is a \(p\) -group for a prime \(p.\) On the other hand, Winterhof has shown that some known results on the non-existence of \((u,u\lambda ,\lambda )\) -difference matrices are extended to \((u,u\lambda -1,\lambda )\) -difference matrices. This fact suggests us that there is a close connection between these two cases. In this article we show that any \((u,u\lambda -1,\lambda )\) -difference matrix over an abelian \(p\) -group can be extended to a \((u,u\lambda ,\lambda )\) -difference matrix.  相似文献   

20.
We study the local Szegö–Weinberger profile in a geodesic ball \(B_g(y_0,r_0)\) centered at a point \(y_0\) in a Riemannian manifold \(({\mathcal {M}},g)\) . This profile is obtained by maximizing the first nontrivial Neumann eigenvalue \(\mu _2\) of the Laplace–Beltrami Operator \(\Delta _g\) on \({\mathcal {M}}\) among subdomains of \(B_g(y_0,r_0)\) with fixed volume. We derive a sharp asymptotic bounds of this profile in terms of the scalar curvature of \({\mathcal {M}}\) at \(y_0\) . As a corollary, we deduce a local comparison principle depending only on the scalar curvature. Our study is related to previous results on the profile corresponding to the minimization of the first Dirichlet eigenvalue of \(\Delta _g\) , but additional difficulties arise due to the fact that \(\mu _2\) is degenerate in the unit ball in \(\mathbb {R}^N\) and geodesic balls do not yield the optimal lower bound in the asymptotics we obtain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号