首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this article, we study the analyticity properties of solutions of the nonlocal Kuramoto‐Sivashinsky equations, defined on 2π‐periodic intervals, where ν is a positive constant; μ is a nonnegative constant; p is an arbitrary but fixed real number in the interval [3,4); and is an operator defined by its symbol in Fourier space, with be the Hilbert transform. We establish spatial analyticity in a strip around the real axis for the solutions of such equations, which possess universal attractors. Also, a lower bound for the width of the strip of analyticity is obtained.  相似文献   

2.
We consider the evolution of microstructure under the dynamics of the generalized Benjamin–Bona–Mahony equation (1) with u: ?2 → ?. If we model the initial microstructure by a sequence of spatially faster and faster oscillating classical initial data vn, we obtain a sequence of spatially highly oscillatory classical solutions un. By considering the Young measures (YMs) ν and µ generated by the sequences vn and un, respectively, as n → ∞, we derive a macroscopic evolution equation for the YM solution µ, and show exemplarily how such a measure‐valued equation can be exploited in order to obtain classical evolution equations for effective (macroscopic) quantities of the microstructure for suitable initial data vn and non‐linearities f. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We show that every L‐periodic mean‐zero solution u of the Kuramoto‐Sivashinsky equation is on average o(L) for L ? 1, in the sense that for any T > 0 the space average of | u(t) | is bounded by for any t > T and any L sufficiently large. For this we argue that on large spatial scales, the solution behaves like an entropy solution of the inviscid Burgers equation. The analysis of this non‐standard perturbation of the Burgers equation is based on a “div‐curl” argument. © 2004 Wiley Periodicals, Inc.  相似文献   

4.
We prove local‐in‐time unique existence and a blowup criterion for solutions in the Triebel‐Lizorkin space for the Euler equations of inviscid incompressible fluid flows in ?n, n ≥ 2. As a corollary we obtain global persistence of the initial regularity characterized by the Triebel‐Lizorkin spaces for the solutions of two‐dimensional Euler equations. To prove the results, we establish the logarithmic inequality of the Beale‐Kato‐Majda type, the Moser type of inequality, as well as the commutator estimate in the Triebel‐Lizorkin spaces. The key methods of proof used are the Littlewood‐Paley decomposition and the paradifferential calculus by J. M. Bony. © 2002 John Wiley & Sons, Inc.  相似文献   

5.
In this work we use a modified tanh–coth method to solve the general Burgers–Fisher and the Kuramoto–Sivashinsky equations. The main idea is to take full advantage of the Riccati equation that the tanh-function satisfies. New multiple travelling wave solutions are obtained for the general Burgers–Fisher and the Kuramoto–Sivashinsky equations.  相似文献   

6.
In this article, using a single computational cell, we report some stable two‐level explicit finite difference approximations of O(kh2 + h4) for ?u/?n for three‐space dimensional quasi‐linear parabolic equation, where h > 0 and k > 0 are mesh sizes in space and time directions, respectively. When grid lines are parallel to x‐, y‐, and z‐coordinate axes, then ?u/?n at an internal grid point becomes ?u/?x, ?u/?y, and ?u/?z, respectively. The proposed methods are also applicable to the polar coordinates problems. The proposed methods have the simplicity in nature and use the same marching type of technique of solution. Stability analysis of a linear difference equation and computational efficiency of the methods are discussed. The results of numerical experiments are compared with exact solutions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 327–342, 2003.  相似文献   

7.
We study the initial boundary value problem for the one‐dimensional Kuramoto–Sivashinsky equation posed in a half line with nonhomogeneous boundary conditions. Through the analysis of the boundary integral operator, and applying the known results of the Cauchy problem of the Kuramoto–Sivashinsky equation posed on the whole line , the initial boundary value problem of the Kuramoto–Sivashinsky equation is shown to be globally well‐posed in Sobolev space for any s >?2. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we employ the Nevanlinna's value distribution theory to investigate the existence of meromorphic solutions of algebraic differential equations. We obtain the representations of all meromorphic solutions for a class of odd order algebraic differential equations with the weak ?p,q?and dominant conditions. Moreover, we give the complex method to find all traveling wave exact solutions of corresponding partial differential equations. As an example, we obtain all meromorphic solutions of the Kuramoto–Sivashinsky equation by using our complex method. Our results show that the complex method provides a powerful mathematical tool for solving great many nonlinear partial differential equations in mathematical physics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical method is proposed for computing time‐periodic and relative time‐periodic solutions in dissipative wave systems. In such solutions, the temporal period, and possibly other additional internal parameters such as the propagation constant, are unknown priori and need to be determined along with the solution itself. The main idea of the method is to first express those unknown parameters in terms of the solution through quasi‐Rayleigh quotients, so that the resulting integrodifferential equation is for the time‐periodic solution only. Then this equation is computed in the combined spatiotemporal domain as a boundary value problem by Newton‐conjugate‐gradient iterations. The proposed method applies to both stable and unstable time‐periodic solutions; its numerical accuracy is spectral; it is fast‐converging; its memory use is minimal; and its coding is short and simple. As numerical examples, this method is applied to the Kuramoto–Sivashinsky equation and the cubic‐quintic Ginzburg–Landau equation, whose time‐periodic or relative time‐periodic solutions with spatially periodic or spatially localized profiles are computed. This method also applies to systems of ordinary differential equations, as is illustrated by its simple computation of periodic orbits in the Lorenz equations. MATLAB codes for all numerical examples are provided in the Appendices to illustrate the simple implementation of the proposed method.  相似文献   

10.
In this paper, we consider the existence of global smooth solutions to 1D compressible isentropic Navier–Stokes equations with density‐dependent viscosity and free boundaries. The initial density ρ0W1,2n is bounded below away from zero and the initial velocity u0L2n. The viscosity coefficient µ is proportional to ρθ with 0<θ?1, where ρis the density. The existence and uniqueness of global solutions in Hi([0,1])(i = 1,2,4) have been established in (J. Math. Phys. 2009; 50 :023101; Meth. Appl. Anal. 2005; 12 :239–252; J. Differ. Equations 2008; 245:3956–3973; Commun. Pure Appl. Anal. 2008; 7 :373–381). By mathematical induction method, we will establish the existence of global smooth solutions to 1D compressible isentropic Navier–Stokes equations with density‐dependent viscosity and free boundaries when the initial data ρ0 and u0 are smooth. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A H1‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (n + 1) × (n + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.  相似文献   

12.
The evolution equation is considered. A discrete parabolic methodology is developed, based on a discrete elliptic (fourth‐order) calculus. The main ingredient of this calculus is a discrete biharmonic operator (DBO). In the general case, it is shown that the approximate solutions converge to the continuous one. An “almost optimal” convergence result (O(h4 ? ?)) is established in the case of constant coefficients, in particular in the pure biharmonic case. Several numerical test cases are presented that not only corroborate the theoretical accuracy result, but also demonstrate high‐order accuracy of the method in nonlinear cases. The nonlinear equations include the well‐studied Kuramoto–Sivashinsky equation. Numerical solutions for this equation are shown to approximate remarkably well the exact solutions. The numerical examples demonstrate the great improvement achieved by using the DBO instead of the standard (five‐point) discrete bilaplacian.  相似文献   

13.
We study spatial analyticity properties of solutions of the three-dimensional Navier–Stokes equations and obtain new growth rate estimates for the analyticity radius. We also study stability properties of strong global solutions of the Navier–Stokes equations with data in Hr, r?1/2, and prove a stability result for the analyticity radius.  相似文献   

14.
We study S‐asymptotically ω‐periodic mild solutions of the semilinear Volterra equation u′(t)=(a* Au)(t)+f(t, u(t)), considered in a Banach space X, where A is the generator of an (exponentially) stable resolvent family. In particular, we extend the recent results for semilinear fractional integro‐differential equations considered in (Appl. Math. Lett. 2009; 22:865–870) and for semilinear Cauchy problems of first order given in (J. Math. Anal. Appl. 2008; 343(2): 1119–1130). Applications to integral equations arising in viscoelasticity theory are shown. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We discuss the efficiency of the conjugate gradient (CG) method for solving a sequence of linear systems; Aun+1 = un, where A is assumed to be sparse, symmetric, and positive definite. We show that under certain conditions the Krylov subspace, which is generated when solving the first linear system Au1 = u0, contains the solutions {un} for subsequent time steps. The solutions of these equations can therefore be computed by a straightforward projection of the right‐hand side onto the already computed Krylov subspace. Our theoretical considerations are illustrated by numerical experiments that compare this method with the order‐optimal scheme obtained by applying the multigrid method as a preconditioner for the CG‐method at each time step. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We prove that a weak solution u = (u 1, u 2, u 3) to the Navier–Stokes equations is strong, if any two components of u satisfy Prodi–Ohyama–Serrin's criterion. As a local regularity criterion, we prove u is bounded locally if any two components of the velocity lie in L 6, ∞.  相似文献   

17.
In this paper, following the techniques of Foias and Temam, we establish Gevrey class regularity of solutions to a class of dissipative equations with a general quadratic nonlinearity and a general dissipation including fractional Laplacian. The initial data is taken to be in Besov type spaces defined via “caloric extension”. We apply our result to the Navier–Stokes equations, the surface quasi-geostrophic equations, the Kuramoto–Sivashinsky equation and the barotropic quasi-geostrophic equation. Consideration of initial data in critical regularity spaces allow us to obtain generalizations of existing results on the higher order temporal decay of solutions to the Navier–Stokes equations. In the 3D case, we extend the class of initial data where such decay holds while in 2D we provide a new class for such decay. Similar decay result, and uniform analyticity band on the attractor, is also proven for the sub-critical 2D surface quasi-geostrophic equation.  相似文献   

18.
In this article, we discuss finite‐difference methods of order two and four for the solution of two‐and three‐dimensional triharmonic equations, where the values of u,(?2u/?n2) and (?4u/?n4) are prescribed on the boundary. For 2D case, we use 9‐ and for 3D case, we use 19‐ uniform grid points and a single computational cell. We introduce new ideas to handle the boundary conditions and do not require to discretize the boundary conditions at the boundary. The Laplacian and the biharmonic of the solution are obtained as byproduct of the methods. The resulting matrix system is solved by using the appropriate block iterative methods. Computational results are provided to demonstrate the fourth‐order accuracy of the proposed methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

19.
We consider the local dynamics of the classical Kuramoto–Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.  相似文献   

20.
The Allen-Cahn equation ? Δu = u ? u 3 in ?2 has family of trivial singly periodic solutions that come from the one dimensional periodic solutions of the problem ?u″ =u ? u 3. In this paper we construct a non-trivial family of singly periodic solutions to the Allen-Cahn equation. Our construction relies on the connection between this equation and the infinite Toda lattice. We show that for each one-soliton solution to the infinite Toda lattice we can find a singly periodic solution to the Allen-Cahn equation, such that its level set is close to the scaled one-soliton. The solutions we construct are analogues of the family of Riemann minimal surfaces in ?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号