首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Geometric processes and replacement problem   总被引:31,自引:0,他引:31  
In this paper, we introduce and study the geometric process which is a sequence of independent non-negative random variablesX 1,X 2,... such that the distribution function ofX n isF (a n–1 x), wherea is a positive constant. Ifa>1, then it is a decreasing geometric process, ifa<1, it is an increasing geometric process. Then, we consider a replacement model as follows: the successive survival times of the system after repair form a decreasing geometric process or a renewal process while the consecutive repair times of the system constitute an increasing geometric process or a renewal process. Besides the replacement policy based on the working age of the system, a new kind of replacement policy which is determined by the number of failures is considered. The explicit expressions of the long-run average costs per unit time under each replacement policy are then calculated, and therefore the corresponding optimal replacement policies can be found analytically or numerically.  相似文献   

2.
针对修理工带有单重休假的单部件可修系统,提出了一种新的维修更换模型.假定系统是可修的,逐次故障后的维修时间构成随机递增的几何过程,系统工作时间构成随机递增的几何过程,在修理工休假时间为定长的情况下,分别选取系统的总工作时间T和故障维修次数N为更换策略,以长期运行单位时间内的期望效益为目标函数,通过更新过程和几何过程理论建立数学模型,导出了目标函数的解析表达式,通过最大化目标函数来获取系统最优的更换策略T*和N*.并在一定条件下给出了策略N比策略T优的充分条件.最后,通过数值例子验证了方法的有效性.  相似文献   

3.
In this paper, the maintenance problem for a cold standby system consisting of two dissimilar components and one repairman is studied. Assume that both component 1 and component 2 after repair follow geometric process repair and component 1 is given priority in use when both components are workable. Under these assumptions, using geometric process repair model, we consider a replacement policy N under which the system is replaced when the number of failures of component 1 reaches N. Our purpose is to determine an optimal replacement policy N1 such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression for the average cost rate of the system is derived and the corresponding optimal replacement policy N1 can be determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results and the model applicability.  相似文献   

4.
In this paper, a δ-shock maintenance model for a deteriorating system is studied. Assume that shocks arrive according to a renewal process, the interarrival time of shocks has a Weibull distribution or gamma distribution. Whenever an interarrival time of shocks is less than a threshold, the system fails. Assume further the system is deteriorating so that the successive threshold values are geometrically nondecreasing, and the consecutive repair times after failure form an increasing geometric process. A replacement policy N is adopted by which the system will be replaced by an identical new one at the time following the Nth failure. Then the long-run average cost per unit time is evaluated. Afterwards, an optimal policy N* for minimizing the long-run average cost per unit time could be determined numerically.  相似文献   

5.
This paper considers an optimal maintenance policy for a practical and reparable deteriorating system subject to random shocks. Modeling the repair time by a geometric process and the failure mechanism by a generalized δ-shock process, we develop an explicit expression of the long-term average cost per time unit for the system under a threshold-type replacement policy. Based on this average cost function, we propose a finite search algorithm to locate the optimal replacement policy N to minimize the average cost rate. We further prove that the optimal policy N is unique and present some numerical examples. Many practical systems fit the model developed in this paper.  相似文献   

6.
In this paper, we study a geometric process model for M/M/1 queueing system with a repairable service station. By introducing a supplementary variable, some queueing characteristics of the system and reliability indices of the service station are derived. Then a replacement policy N for the service station by which the service station will be replaced following the Nth failure is applied. An optimal replacement policy N1 for minimizing the long-run average cost per unit time for the service station is then determined.  相似文献   

7.
In this paper, the optimal replacement problem is investigated for a system with two types of failures. One type of failure is repairable, which is conducted by a repairman when it occurs, and the other is unrepairable, which leads to a replacement of the system at once. The repair of the system is not “as good as new”. The consecutive operating times of the system after repair form a decreasing geometric process, while the repair times after failure are assumed to be independent and identically distributed. Replacement policy N is adopted, where N is the number of repairable failures. The system will be replaced at the Nth repairable failure or at the unrepairable failure, whichever occurs first. Two replacement models are considered, one is based on the limiting availability and the other based on the long-run average cost rate of the system. We give the explicit expressions for the limiting availability and the long-run average cost rate of the system under policy N, respectively. By maximizing the limiting availability A(N) and minimizing the long-run average cost rate C(N), we theoretically obtain the optimal replacement policies N in both cases. Finally, some numerical simulations are presented to verify the theoretical results.  相似文献   

8.
本文研究了单部件、一个修理工组成的可修系统的最优更换问题,假定系统不能修复如新,以系统年龄T为策略,利用几何过程求出了最优的策略T^*,使得系统经长期运行单位时间内期望效益达到最大,并求出了系统经长期运行单位时间内期望效益的显式表达式。在一定条件下证明了T^*的唯一存在性。最后还证明了策略T^*比文献[6]中的策略T^*优。  相似文献   

9.
一个可修系统的最优更换模型   总被引:14,自引:0,他引:14  
张元林  贾积身 《应用数学》1996,9(2):180-184
本文考虑了单部件、一个修理工组成的可修系统,在故障系统不能“修复如新”的前提下,我们利用几何过程,以系统年龄T为策略,选择最优的T使得系统经长期运行单位时间的期望效益达到最大.本文还在一定的条件下证明了最优更换策略T的唯一存在,且求出了系统经长期运行单位时间的最大期望效益的明显表达式.  相似文献   

10.
研究了单部件组成的退化可修系统,在假定故障部件“修复非新”的条件下,以系统中部件的故障次数N为更换策略进行了研究,我们推导出系统经长期运行后,单位时间内期望效益的明显表达式,而且在一定条件下证明了最优策略N*是所有更换策略中最优的.最后还通过几何过程对此进行了讨论.  相似文献   

11.
Miaomiao Yu  Yinghui Tang 《TOP》2017,25(1):80-94
We study a \(\delta \) shock and wear model in which the system can fail due to the frequency of the shocks caused by external conditions, or aging and accumulated wear caused by intrinsic factors. The external shocks occur according to a Bernoulli process, i.e., the inter-arrival times between two consecutive shocks follow a geometric distribution. Once the system fails, it can be repaired immediately. If the system is not repairable in a pre-specific time D, it can be replaced by a new one to avoid the unnecessary expanses on repair. On the other hand, the system can also be replaced whenever its number of repairs exceeds N. Given that infinite operating and repair times are not commonly encountered in practical situations, both of these two random variables are supposed to obey general discrete distribution with finite support. Replacing the finite support renewal distributions with appropriate phase-type (PH) distributions and using the closure property associated with PH distribution, we formulate the maximum repair time replacement policy and obtain analytically the long-run average cost rate. Meanwhile, the optimal replacement policy is also numerically determined by implementing a two-dimensional-search process.  相似文献   

12.
In this paper an integral equation technique is used to evaluate the expected cost for the period (0, t] of a policy involving minimal repair at failure with replacement after N failures. This cost function provides an appropriate criterion to determine the optimal replacement number N* for a system required for use over a finite time horizon. In an example, it is shown that significant cost savings can be achieved using N* from the new finite time horizon model rather than the value predicted by the usual asymptotic model.  相似文献   

13.
研究由两个部件串联组成的系统的预防维修策略, 当系统的工作时间达到T时进行预防维修, 预防维修使部件恢复到上一次故障维修后的状态. 当部件发生故障后进行故障维修, 因为各种原因可能会延迟修理. 部件在每次故障维修后的工作时间形成随机递减的几何过程, 且每次故障后的维修时间形成随机递增的几何过程. 以部件进行预防维修的间隔T和更换前的故障次数N组成的二维策略(T,N)为策略, 利用更新过程和几何过程理论求出了系统经长期运行单位时间内期望费用的表达式, 并给出了具体例子和数值分析.  相似文献   

14.
In this paper, a deteriorating simple repairable system with k + 1 states, including k failure states and one working state, is studied. The system after repair is not ‘as good as new’ and the deterioration of the system is stochastic. Under these assumptions, we study a replacement policy, called policy N, based on the failure number of the system. The objective is to maximize the long-run expected profit per unit time. The explicit expression of the long-run expected profit per unit time is derived and the corresponding optimal solution may be determined analytically or numerically. Furthermore, we prove that the model for the multistate system in this paper forms a general monotone process model which includes the geometric process repair model as a special case. A numerical example is given to illustrate the theoretical results.  相似文献   

15.
高俏俏 《运筹与管理》2021,30(3):117-122
本文研究的是由两个部件串联组成且有两种故障状态的系统的预防维修策略, 当系统的工作时间达到T时进行预防维修, 预防维修使部件恢复到上一次故障维修后的状态。每个部件发生故障都有两种状态, 可维修和不可维修。当部件的故障为可维修故障时, 修理工对其进行故障维修, 且每次故障维修后的工作时间形成随机递减的几何过程, 每次故障后的维修时间形成随机递增的几何过程。当部件发生N次可维修故障或一次不可维修故障时进行更换。以部件进行预防维修的间隔和更换前的可维修故障次数N组成的二维策略(T, N) 为策略, 利用更新过程和几何过程理论求出了系统经长期运行单位时间内期望费用的表达式, 并给出了具体例子和数值分析。  相似文献   

16.
A direct combinatorial proof is given to a generalization of the fact that the largest modulusN of a disjoint covering system appears at leastp times in the system, wherep is the smallest prime dividingN. The method is based on geometric properties of lattice parallelotopes. This research was supported by grant 85-00368 from the United States-Is rael Binational Science Foundation, Jerusalem, Israel.  相似文献   

17.
In this work, we study the existence of time periodic weak solution for the N‐dimensional Vlasov–Poisson system with boundary conditions. We start by constructing time periodic solutions with compact support in momentum and bounded electric field for a regularized system. Then, the a priori estimates follow by computations involving the conservation laws of mass, momentum and energy. One of the key point is to impose a geometric hypothesis on the domain: we suppose that its boundary is strictly star‐shaped with respect to some point of the domain. These results apply for both classical or relativistic case and for systems with several species of particles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this article we get a result on propagation of geometric properties for solutions of the non-homogeneous incompressible Euler system in any dimension N ≥ 2. In particular, we investigate conservation of striated and conormal regularity, which generalize the 2-D structure of vortex patches. The results we get are only local in time, even for N = 2; however, we provide an explicit lower bound for the lifespan of the solution. In the case of physical dimension N = 2 or 3, we investigate also propagation of Hölder regularity in the interior of a bounded domain.  相似文献   

19.
In this paper, we study a modified minimal repair/replacement problem that is formulated as a Markov decision process. The operating cost is assumed to be a nondecreasing function of the system's age. The specific maintenance actions for a manufacturing system to be considered are whether to have replacement, minimal repair or keep it operating. It is shown that a control limit policy, or in particular a (t, T) policy, is optimal over the space of all possible policies under the discounted cost criterion. A computational algorithm for the optimal (t, T) policy is suggested based on the total expected discounted cost.  相似文献   

20.
Consider a polling system withK1 queues and a single server that visits the queues in a cyclic order. The polling discipline in each queue is of general gated-type or exhaustive-type. We assume that in each queue the arrival times form a Poisson process, and that the service times, the walking times, as well as the set-up times form sequences of independent and identically distributed random variables. For such a system, we provide a sufficient condition under which the vector of queue lengths is stable. We treat several criteria for stability: the ergodicity of the process, the geometric ergodicity, and the geometric rate of convergence of the first moment. The ergodicity implies the weak convergence of station times, intervisit times and cycle times. Next, we show that the queue lengths, station times, intervisit times and cycle times are stochastically increasing in arrival rates, in service times, in walking times and in setup times. The stability conditions and the stochastic monotonicity results are extended to the polling systems with additional customer routing between the queues, as well as bulk and correlated arrivals. Finally, we prove that the mean cycle time, the mean intervisit time and the mean station times are invariant under general service disciplines and general stationary arrival and service processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号