首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplicative programming problems (MPPs) are global optimization problems known to be NP-hard. In this paper, we employ algorithms developed to compute the entire set of nondominated points of multi-objective linear programmes (MOLPs) to solve linear MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs in the special case of linear MPPs by only solving one linear programme in each iteration, instead of two as the previous version indicates. We call this algorithm, which is based on Benson’s outer approximation algorithm for MOLPs, the primal objective space algorithm. Then, based on the dual variant of Benson’s algorithm, we propose a dual objective space algorithm for solving linear MPPs. The dual algorithm also requires solving only one linear programme in each iteration. We prove the correctness of the dual algorithm and use computational experiments comparing our algorithms to a recent global optimization algorithm for linear MPPs from the literature as well as two general global optimization solvers to demonstrate the superiority of the new algorithms in terms of computation time. Thus, we demonstrate that the use of multi-objective optimization techniques can be beneficial to solve difficult single objective global optimization problems.  相似文献   

2.
一类凸规划的多项式预估校正内点法   总被引:2,自引:0,他引:2  
1、引言 1990年由Mehrotra对线性规划问题提出了一个称为预估校正的方法,并在1992年给出了其数值算法.1993年Mizuno,Todd和Y.Ye.给出了改进的预估校正内点法,使得一个预估步后只跟一个校正步.1994年F.A.Potra给出了不可行预估校正内点法,使得可以从一个不可行的初始点开始算法的迭代,并证明了其为二次收敛.  相似文献   

3.
基于光滑Fischer-Burmeister函数,本文给出一个新的求解二阶锥规划的非内部连续化算法.算法对初始点的选取没有任何限制,并且在每一步迭代只需求解一个线性方程组并进行一次线性搜索.在不需要满足严格互补条件下,证明了算法是全局收敛且是局部超线性收敛的.数值试验表明算法是有效的.  相似文献   

4.
A new smoothing function for the second-order cone programming is given by smoothing the symmetric perturbed Fischer–Burmeister function. Based on this new function, a one-step smoothing Newton method is presented for solving the second-order cone programming. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. This algorithm does not have restrictions regarding its starting point and is Q-quadratically convergent. Numerical results suggest the effectiveness of our algorithm.  相似文献   

5.
基于一个连续可微函数,通过等价变换中心路径,给出求解线性权互补问题的一个新全牛顿步可行内点算法.该算法每步迭代只需求解一个线性方程组,且不需要进行线搜索.通过适当选取参数,分析了迭代点的严格可行性,并证明算法具有线性优化最好的多项式时间迭代复杂度.数值结果验证了算法的有效性.  相似文献   

6.
A two-step iterative scheme based on the multiplicative splitting iteration is presented for PageRank computation. The new algorithm is applied to the linear system formulation of the problem. Our method is essentially a two-parameter iteration which can extend the possibility to optimize the iterative process. Theoretical analyses show that the iterative sequence produced by our method is convergent to the unique solution of the linear system, i.e., PageRank vector. An exact parameter region of convergence for the method is strictly proved. In each iteration, the proposed method requires solving two linear sub-systems with the splitting of the coefficient matrix of the problem. We consider using inner iterations to compute approximate solutions of these linear sub-systems. Numerical examples are presented to illustrate the efficiency of the new algorithm.  相似文献   

7.
圆锥规划是一类重要的非对称锥优化问题.基于一个光滑函数,将圆锥规划的最优性条件转化成一个非线性方程组,然后给出求解圆锥规划的光滑牛顿法.该算法只需求解一个线性方程组和进行一次线搜索.运用欧几里得约当代数理论,证明该算法具有全局和局部二阶收敛性.最后数值结果表明算法的有效性.  相似文献   

8.
In this paper, we propose a reference direction approach and an interactive algorithm to solve the general multiple objective integer linear programming problem. At each iteration, only one mixed integer linear programming problem is solved to find an (weak) efficient solution. Each intermediate solution is integer. The decision maker has to provide only the reference point at each iteration. No special software is required to implement the proposed algorithm. The algorithm is illustrated with an example.  相似文献   

9.
对线性互补问题提出了一种新的宽邻域预估校正算法,算法是基于经典线性规划路径跟踪算法的思想,将Maziar Salahi关于线性规划预估校正算法推广到线性互补问题中,给出了算法的具体迭代步骤并讨论了算法迭代复杂性,最后证明了算法具有多项式复杂性为O(ηlog(X~0)~Ts~0/ε)。  相似文献   

10.
A new smoothing function is given in this paper by smoothing the symmetric perturbed Fischer-Burmeister function. Based on this new smoothing function, we present a smoothing Newton method for solving the second-order cone optimization (SOCO). The method solves only one linear system of equations and performs only one line search at each iteration. Without requiring strict complementarity assumption at the SOCO solution, the proposed algorithm is shown to be globally and locally quadratically convergent. Numerical results demonstrate that our algorithm is promising and comparable to interior-point methods.  相似文献   

11.
The circular cone programming (CCP) problem is to minimize or maximize a linear function over the intersection of an affine space with the Cartesian product of circular cones. In this paper, we study nondegeneracy and strict complementarity for the CCP, and present a nonmonotone smoothing Newton method for solving the CCP. We reformulate the CCP as a second-order cone programming (SOCP) problem using the algebraic relation between the circular cone and the second-order cone. Then based on a one parametric class of smoothing functions for the SOCP, a smoothing Newton method is developed for the CCP by adopting a new nonmonotone line search scheme. Without restrictions regarding its starting point, our algorithm solves one linear system of equations approximately and performs one line search at each iteration. Under mild assumptions, our algorithm is shown to possess global and local quadratic convergence properties. Some preliminary numerical results illustrate that our nonmonotone smoothing Newton method is promising for solving the CCP.  相似文献   

12.
An algorithm for solving a nonsingular symmetric system of linear equations with a saddle point is examined. This algorithm has two constant iteration parameters and is an extension of the algorithm of Hermitian and skew-Hermitian splitting iterations (the HSS algorithm). Analytical formulas are derived for the optimal values of the iteration parameters. The formulation of the optimization problem is a classical one for the saddle-point problems. The results obtained are sharp.  相似文献   

13.
In this article, we first reformulate the generalized nonlinear complementarity problem (GNCP) over a polyhedral cone as a smoothing system of equations and then suggest a smoothing Broyden-like method for solving it. The proposed algorithm has to solve only one system of nonhomogeneous linear equations, perform only one line search and update only one matrix per iteration. We show that the iteration sequence generated by the proposed algorithm converges globally and superlinearly under suitable conditions. Furthermore, the algorithm has local quadratic convergence under mild assumptions. Some numerical examples are given to illustrate the performance and efficiency of the presented algorithm.  相似文献   

14.
Based on the Chen-Harker-Kanzow-Smale (CHKS) smoothing function, a non-interior continuation method is presented for solving the second-order cone programming (SOCP). Our algorithm reformulates the SOCP as a nonlinear system of equations and then applies Newton’s method to the perturbation of this system. The proposed algorithm does not have restrictions regarding its starting point and solves at most one linear system of equations at each iteration. Under suitable assumptions, the algorithm is shown to be globally and locally quadratically convergent. Some numerical results are also included which indicate that our algorithm is promising and comparable to interior-point methods.  相似文献   

15.
For exact Newton method for solving monotone semidefinite complementarity problems (SDCP), one needs to exactly solve a linear system of equations at each iteration. For problems of large size, solving the linear system of equations exactly can be very expensive. In this paper, we propose a new inexact smoothing/continuation algorithm for solution of large-scale monotone SDCP. At each iteration the corresponding linear system of equations is solved only approximately. Under mild assumptions, the algorithm is shown to be both globally and superlinearly convergent.  相似文献   

16.
This paper presents a quadratically convergent, rank one, variance algorithm for constrained minimization with linear constraints. The algorithm does not require a linear search for a local minimum in every iteration. Linear searches are made only when needed for stability and convergence.  相似文献   

17.
基于一类带有参数theta的新方向, 提出了求解单调线性互补问题的宽邻 域路径跟踪内点算法, 且当theta=1时即为经典牛顿方向. 当取theta为与问题规模 n无关的常数时, 算法具有O(nL)迭代复杂性, 其中L是输入数据的长度, 这与经典宽邻 域算法的复杂性相同; 当取theta=\sqrt{n/\beta\tau}时, 算法具有O(\sqrt{n}L)迭代复杂性, 这里的\beta, \tau是邻域参数, 这与窄邻域算法的复杂性相同. 这是首次研究包括经典宽邻域路径跟踪算法的一类内点算法, 给出了统一的算法框架和收敛性分析方法.  相似文献   

18.
《Optimization》2012,61(8):965-979
We extend the smoothing function proposed by Huang, Han and Chen [Journal of Optimization Theory and Applications, 117 (2003), pp. 39–68] for the non-linear complementarity problems to the second-order cone programming (SOCP). Based on this smoothing function, a non-interior continuation method is presented for solving the SOCP. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that our algorithm is globally and locally superlinearly convergent in absence of strict complementarity at the optimal solution. Numerical results indicate the effectiveness of the algorithm.  相似文献   

19.
1.IntroductionTheproblemconsideredinthispaperiswhereX={xER"laTx5hi,jEI={l,.'.,m}},ajeR"(jEI)areallcolumn*ThisresearchissupportedbytheNationalNaturalSciencesFoundationofChinaandNaturalSciencesFoundationofHunanProvince.vectors,hiERI(j6I)areallscalars,andf:R"-- Risacontinuouslydifferentiablefunction.Weonlyconsiderinequalityconstraintsheresinceanyequalitycanbeexpressedastwoinequalities.Withoutassumingregularityofthelinearconstraints,thereisnotanydifficultyinextendingtheresultstothegenera…  相似文献   

20.
When using interior point methods for solving semidefinite programs (SDP), one needs to solve a system of linear equations at each iteration. For problems of large size, solving the system of linear equations can be very expensive. In this paper, we propose a trust region algorithm for solving SDP problems. At each iteration we perform a number of conjugate gradient iterations, but do not need to solve a system of linear equations. Under mild assumptions, the convergence of this algorithm is established. Numerical examples are given to illustrate the convergence results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号