首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In data envelopment analysis (DEA), efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for a category DMUs and finds the stability radius for all efficient DMUs. By means of combining some classic DEA models and with the condition that the efficiency scores of efficient DMUs remain unchanged, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalizes the conventional sensitivity analysis approach in which the inputs of efficient DMUs increase and their outputs decrease, while the inputs of inefficient DMUs decrease and their outputs increase. We find the maximum quantity of perturbations of data so that all first level efficient DMUs remain at the same level.  相似文献   

2.
In data envelopment analysis (DEA) efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as, those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when variations in the data are simultaneously considered for all DMUs. By means of modified DEA models, in which the specific DMU under examination is excluded from the reference set, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalises the usual sensitivity analysis approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs remain fixed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs and outputs. We study the relations of the infeasibility of modified DEA models employed and the robustness of DEA models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA efficiency classifications are robust with respect to possible data errors, particularly in the convex DEA case.  相似文献   

3.
Efficiency could be not only the ratio of weighted sum of outputs to that of inputs but also that of weighted sum of inputs to that of outputs. When the previous efficiency measures the best relative efficiency within the range of no more than one, the decision-making units (DMUs) who get the optimum value of one perform best among all the DMUs. If the previous efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform worst among all the DMUs. When the later efficiency is measured within the range of no more than one, the DMUs who get the optimum value of one perform worst among all the DMUs. If the later efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform best among all the DMUs. This paper mainly studies an interval DEA model with later efficiency, in which efficiency is measured within the range of an interval, whose upper bound is set to one and the lower bound is determined by introducing a virtual ideal DMU, whose performance is definitely superior to any DMUs. The efficiencies, obtained from interval DEA model, turn out to be all intervals and are referred to as interval efficiencies, which combine the best and the worst relative efficiency in a reasonable manner to give an overall assessment of performances for all DMUs. Assessor's preference information on input and output weights is also incorporated into interval DEA model reasonably and conveniently. Through an example, some differences are found from the ranking results obtained from interval DEA model and bounded DEA model using the Hurwicz criterion approach to rank the interval efficiencies.  相似文献   

4.
In this paper we discuss the question: among a group of decision making units (DMUs), if a DMU changes some of its input (output) levels, to what extent should the unit change outputs (inputs) such that its efficiency index remains unchanged? In order to solve this question we propose a solving method based on Data Envelopment Analysis (DEA) and Multiple Objective Linear Programming (MOLP). In our suggested method, the increase of some inputs (outputs) and the decrease due to some of the other inputs (outputs) are taken into account at the same time, while the other offered methods do not consider the increase and the decrease of the various inputs (outputs) simultaneously. Furthermore, existing models employ a MOLP for the inefficient DMUs and a linear programming for weakly efficient DMUs, while we propose a MOLP which estimates input/output levels, regardless of the efficiency or inefficiency of the DMU. On the other hand, we show that the current models may fail in a special case, whereas our model overcomes this flaw. Our method is immediately applicable to solve practical problems.  相似文献   

5.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples.  相似文献   

6.
This paper is primarily concerned with data envelopment analysis (DEA) of systems where negative outputs and negative inputs arise naturally. Examples of situations in which both negative inputs and negative outputs occur are given. More attention has been paid, in the literature, to the former type of problem. Most available DEA software does not solve this type of problem or copes with negative outputs and possibly negative inputs by assigning zero weights to them. A modified slacks-based measure (MSBM) model is presented, in which both negative outputs and negative inputs occur. The MSBM model overcomes the lack of translation invariance in the slacks-based measure model by drawing on the ideas from the range directional model (RDM). The MSBM model takes into account individual input and output slacks, which provides more precise evaluation of inefficient decision-making units (DMUs). It therefore, generally leads to lower efficiencies for inefficient DMUs than the RDM.  相似文献   

7.
The slacks-based measure (SBM) can incorporate input and output slacks that would otherwise be neglected in the classical DEA model. In parallel, the super-efficiency model for SBM (S-SBM) has been developed for the purpose of ranking SBM efficient decision-making units (DMUs). When implementing SBM in conjunction with S-SBM, however, several issues can arise. First, unlike the standard super-efficiency model, S-SBM can only solve for super-efficiency scores but not SBM scores. Second, the S-SBM model may result in weakly efficient reference points. Third, the S-SBM and SBM scores for certain DMUs may be discontinuous with a perturbation to their inputs and outputs, making it hard to interpret and justify the scores in applications and the efficiency scores may be sensitive to small changes/errors in data. Due to this discontinuity, the S-SBM model may overestimate the super-efficiency score. This paper extends the existing SBM approaches and develops a joint model (J-SBM) that addresses the above issues; namely, the J-SBM model can (1) simultaneously compute SBM scores for inefficient DMUs and super-efficiency for efficient DMUs, (2) guarantee the reference points generated by the joint model are Pareto-efficient, and (3) the J-SBM scores of a firm are continuous in the input and output space. Interestingly, the radial DEA efficiency and super-efficiency scores for a DMU are continuous in the input–output space. The J-SBM model combines the merits of the radial and SBM models (i.e., continuity and Pareto-efficiency).  相似文献   

8.
Discretionary models of data envelopment analysis (DEA) assume that all inputs and outputs can be varied at the discretion of management or other users. In any realistic situation, however, there may exist “exogenously fixed” or non-discretionary factors that are beyond the control of a DMU’s management, which also need to be considered. This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses when some inputs are exogenously fixed. Super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. In this paper by means of modified Banker and Morey’s (BM hereafter) model [R.D. Banker, R. Morey, Efficiency analysis for exogenously fixed inputs and outputs, Operations Research 34 (1986) 513–521], in which the test DMU is excluded from the reference set, we are able to determine what perturbations of discretionary data can be tolerated before frontier DMUs become nonfrontier.  相似文献   

9.
This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.  相似文献   

10.
This paper proposes a centralized resource allocation (CRA) model for the enhanced Russell model. All the DMUs can be easily projected onto the efficient frontier by solving only one model. This projection can be made by transforming the proposed model to a linear programming problem. In this paper, instead of non-radially increasing or decreasing the inputs or outputs individually, we increase or decrease non-radially all of the inputs and outputs at the same time. By solving a single model, we can provide targets for all DMUs. By the proposed approximation, different targets can be found for all DMUs, as compared to those obtained by the previous approximations. The proposed model can be developed to CRA models. Finally, an applied example emphasizes the importance of the proposed model.  相似文献   

11.
Data envelopment analysis (DEA) is a non-parametric approach based on linear programming that has been widely applied for evaluating the relative efficiency of a set of homogeneous decision-making units (DMUs) with multiple inputs and outputs. The original DEA models use positive input and output variables that are measured on a ratio scale, but these models do not apply to the variables in which negative data can appear. However, with the widespread use of interval scale data and undesirable data, the emphasis has been directed towards the simultaneous consideration of the positive and negative data in DEA models. In this paper, using the slacks-based measure, we propose an extended model to evaluate the efficiency of DMUs, even if some variables are measured on an interval scale and some on a ratio scale. Moreover, the extended model allows for the presence of all interval-scale variables, which are capable of taking both negative and positive values.  相似文献   

12.
The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence, the classical DEA allows the weight flexibility. Therefore, even if they are important, the inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even if they are inefficient. This situation leads to unrealistic results. Also to eliminate the problem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a new model which has not been published in the literature. We describe it as the restricted data envelopment analysis ((ARIII(COR))) model with correlation coefficients. The aim for developing this new model, is to take into account the relations between variables using correlation coefficients. Also, these relations were added as constraints to the CCR and BCC models. For this purpose, the correlation coefficients were used in the restrictions of input–output each one alone and their combination together. Inputs and outputs are related to the degree of correlation between each other in the production. Previous studies did not take into account the relationship between inputs/outputs variables. So, only with expert opinions or an objective method, weight restrictions have been made. In our study, the weights for input and output variables were determined, according to the correlations between input and output variables. The proposed new method is different from other methods in the literature, because the efficiency scores were calculated at the level of correlations between the input and/or output variables.  相似文献   

13.
Based on the minimal reduction strategy, Yang et al. (2011) developed a fixed-sum output data envelopment analysis (FSODEA) approach to evaluate the performance of decision-making units (DMUs) with fixed-sum outputs. However, in terms of such a strategy, all DMUs compete over fixed-sum outputs with “no memory” that will result in differing efficient frontiers’ evaluations. To address the problem, in this study, we propose an equilibrium efficiency frontier data envelopment analysis (EEFDEA) approach, by which all DMUs with fixed-sum outputs can be evaluated based on a common platform (or equilibrium efficient frontier). The proposed approach can be divided into two stages. Stage 1 constructs a common evaluation platform via two strategies: an extended minimal adjustment strategy and an equilibrium competition strategy. The former ensures that original efficient DMUs are still efficient, guaranteeing the existence of a common evaluation platform. The latter makes all DMUs achieve a common equilibrium efficient frontier. Then, based on the common equilibrium efficient frontier, Stage 2 evaluates all DMUs with their original inputs and outputs. Finally, we illustrate the proposed approach by using two numerical examples.  相似文献   

14.
The purpose of this study is providing a method based on DEA to evaluate the performance of Academy Award winners for Best Original Score from 1990 to 2016, and ranking them. Composers are considered as DMUs, and the indicators are derived from experts’ opinions and divided into inputs and outputs. Assuming variable return to scale and applying the B.C.C model, we obtained the efficiency values for all DMUs. Furthermore, all DMUs have ranked.  相似文献   

15.
Data Envelopment Analysis (DEA) is a technique based on mathematical programming for evaluating the efficiency of homogeneous Decision Making Units (DMUs). In this technique inefficient DMUs are projected on to the frontier which constructed by the best performers. Centralized Resource Allocation (CRA) is a method in which all DMUs are projected on to the efficient frontier through solving just one DEA model. The intent of this paper is to present the Stochastic Centralized Resource Allocation (SCRA) in order to allocate centralized resources where inputs and outputs are stochastic. The concept discussed throughout this paper is illustrated using the aforementioned example.  相似文献   

16.
Classical CCR and BCC DEA-models follow a general concept: they allow each DMU to evaluate its (in-) efficiency in the most favorable way, and then propose input reduction and/or output raise so as to follow its best practice units. A first step beyond this ‘self-appraisal’ is the consideration of X-efficiencies thus evaluating DMUs with optimal weights of a peer. Doing this for all possible peers yields a cross-efficiency matrix, either for CCR or for BCC models. This matrix might help to find a fair peer for the remaining DMUs. In a second step recent contributions analyze for CCR-models how such X-evaluated DMUs might improve their efficiency with respect to a peer’s weight system. In these models even free variation of inputs/outputs is possible rather than reduction and/or raise. Such models will be portrayed here and generalized for variable returns to scale. The remaining discomfort which a DMU might feel with the choice for peer among business rivals, leads to the concept of a ‘virtual peer’ VP. This paper proposes such a peer as a consensual option for all DMUs. Now for either return to scale – CCR and BCC – for an input or output oriented focus and by free variation of inputs and outputs they can meet the requirements of VP. The DMUs pay a heavy price, however: the peer controls their respective weights and even their activities; he is a dictator.  相似文献   

17.
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU’s efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.  相似文献   

18.
Data Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of decision-making units (DMUs). Since the data of production processes cannot be precisely measured in some cases, the uncertain theory has played an important role in DEA. This paper attempts to extend the traditional DEA models to a fuzzy framework, thus producing a fuzzy DEA model based on credibility measure. Following is a method of ranking all the DMUs. In order to solve the fuzzy model, we have designed the hybrid algorithm combined with fuzzy simulation and genetic algorithm. When the inputs and outputs are all trapezoidal or triangular fuzzy variables, the model can be transformed to linear programming. Finally, a numerical example is presented to illustrate the fuzzy DEA model and the method of ranking all the DMUs.  相似文献   

19.
In a Data Envelopment Analysis model, some of the weights used to compute the efficiency of a unit can have zero or negligible value despite of the importance of the corresponding input or output. This paper offers an approach to preventing inputs and outputs from being ignored in the DEA assessment under the multiple input and output VRS environment, building on an approach introduced in Allen and Thanassoulis (2004) for single input multiple output CRS cases. The proposed method is based on the idea of introducing unobserved DMUs created by adjusting input and output levels of certain observed relatively efficient DMUs, in a manner which reflects a combination of technical information and the decision maker’s value judgements. In contrast to many alternative techniques used to constrain weights and/or improve envelopment in DEA, this approach allows one to impose local information on production trade-offs, which are in line with the general VRS technology. The suggested procedure is illustrated using real data.  相似文献   

20.
Data envelopment analysis (DEA) is a technique for evaluating relative efficiencies of peer decision making units (DMUs) which have multiple performance measures. These performance measures have to be classified as either inputs or outputs in DEA. DEA assumes that higher output levels and/or lower input levels indicate better performance. This study is motivated by the fact that there are performance measures (or factors) that cannot be classified as an input or output, because they have target levels with which all DMUs strive to achieve in order to attain the best practice, and any deviations from the target levels are not desirable and may indicate inefficiency. We show how such performance measures with target levels can be incorporated in DEA. We formulate a new production possibility set by extending the standard DEA production possibility set under variable returns-to-scale assumption based on a set of axiomatic properties postulated to suit the case of targeted factors. We develop three efficiency measures by extending the standard radial, slacks-based, and Nerlove–Luenberger measures. We illustrate the proposed model and efficiency measures by applying them to the efficiency evaluation of 36 US universities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号