首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper studies the problem of global exponential stability and exponential convergence rate for a class of impulsive discrete-time neural networks with time-varying delays. Firstly, by means of the Lyapunov stability theory, some inequality analysis techniques and a discrete-time Halanay-type inequality technique, sufficient conditions for ensuring global exponential stability of discrete-time neural networks are derived, and the estimated exponential convergence rate is provided as well. The obtained results are then applied to derive global exponential stability criteria and exponential convergence rate of impulsive discrete-time neural networks with time-varying delays. Finally, numerical examples are provided to illustrate the effectiveness and usefulness of the obtained criteria.  相似文献   

2.
A mathematical model of a single isolated artificial neuron with hysterisis is formulated by means of a neutral delay differential equation. The asymptotic and exponential stability of such a model are investigated. Sufficient conditions for the exponential stability of a linear integral difference inequality are obtained. In the absence of hysterisis effect, our model reduces to a known model of a single neuron. Usually asymptotic stability of neutral delay differential equations is studied by means of degenerate Lyapunov–Kravsovskii functionals. In this article, perhaps for the first time exponential stability of a class of neutral differential equations are studied by means of the exponential stability of an affiliated difference inequality. While generalization to Hopfield type hysteretic neural networks is possible, such a generalization is not considered in this article.  相似文献   

3.
本文首先研究了一维带跳随机微分方程的指数稳定性,并证明Euler-Maruyama(EM)方法保持了解析解的稳定性.其次,研究了多维带跳随机微分方程的稳定性,证明若系数满足全局Lipchitz条件,则EM方法能够很好地保持解析解的几乎处处指数稳定性、均方指数稳定性.最后,给出算例来支持所得结论的正确性.  相似文献   

4.
We propose a new method for studying stability of second order delay differential equations. Results we obtained are of the form: the exponential stability of ordinary differential equation implies the exponential stability of the corresponding delay differential equation if the delays are small enough. We estimate this smallness through the coefficients of this delay equation. Examples demonstrate that our tests of the exponential stability are essentially better than the known ones. This method works not only for autonomous equations but also for equations with variable coefficients and delays.  相似文献   

5.
In this paper, we shall study the almost sure pathwise exponential stability property for a class of stochastic functional differential equations with delays, possibly, in the highest-order derivative terms driven by multiplicative noise. Instead of establishing a moment exponential stability as the first step and then proceeding to investigate the pathwise stability of the system under consideration, we shall develop a direct approach for this problem. As a consequence, we can show that some systems, which are not exponential momently stable, have the exponential stability not sensitive to small delays in the almost sure sense.  相似文献   

6.
Ou Ou   《Chaos, solitons, and fractals》2007,32(5):1742-1748
In this paper, the problems of determining the robust exponential stability and estimating the exponential convergence rate for neural networks with parametric uncertainties and time delay are studied. Based on Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique, some delay-dependent criteria are derived to guarantee global robust exponential stability. The exponential convergence rate can be easily estimated via these criteria.  相似文献   

7.
In this paper, a graph‐theoretic approach for checking exponential stability of the system described by neutral stochastic coupled oscillators network with time‐varying delayed coupling is obtained. Based on graph theory and Lyapunov stability theory, delay‐dependent criteria are deduced to ensure moment exponential stability and almost sure exponential stability of the addressed system, respectively. These criteria can show how coupling topology, time delays, and stochastic perturbations affect exponential stability of such oscillators network. This method may also be applied to other neutral stochastic coupled systems with time delays. Finally, numerical simulations are presented to show the effectiveness of theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Convergence dynamics of reaction–diffusion recurrent neural networks (RNNs) with continuously distributed delays and stochastic influence are considered. Some sufficient conditions to guarantee the almost sure exponential stability, mean value exponential stability and mean square exponential stability of an equilibrium solution are obtained, respectively. Lyapunov functional method, M-matrix properties, some inequality technique and nonnegative semimartingale convergence theorem are used in our approach. These criteria ensuring the different exponential stability show that diffusion and delays are harmless, but random fluctuations are important, in the stochastic continuously distributed delayed reaction–diffusion RNNs with the structure satisfying the criteria. Two examples are also given to demonstrate our results.  相似文献   

9.
In this paper, theorems concerning the partial exponential stability and globally partial exponential stability of nonlinear time-varying large-scale systems are obtained via both scalar and vector Lyapunov function methods and both scalar and vector comparison technique. By describing high-order systems as collections of lower interconnected subsystems so that the partial exponential stability and globally partial exponential stability property of isolated subsystems infers the same property of the over-all system, these theorems obtained here extend and complemented the relevant known results and enriched the contents of the partial exponential stability theory for nonlinear time-varying large-scale systems. Finally, two numerical examples are presented to illustrate the effectiveness of the results.  相似文献   

10.
This paper addresses exponential stability problem for a class of linear systems with time-varying delay. The time delay is assumed to be a continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a set of augmented Lyapunov–Krasovskii functional combined with the Newton–Leibniz formula technique, new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of linear matrix inequalities (LMIs). An application to exponential stability of uncertain linear systems with interval time-varying delay is given. Numerical examples are given to show the effectiveness of the obtained results.  相似文献   

11.
避免构造Lyapunov函数的困难,运用广义Dahlquist数方法研究了Cohen- Grossberg神经网络模型的指数稳定性,不但得到了Cohen-Grossberg神经网络平衡点存在惟一性和指数稳定性的全新充分条件,而且给出了神经网络的指数衰减估计.与已有文献结果相比,所得的神经网络指数稳定的充分条件更为宽松,给出的解的指数衰减速度估计也更为精确.  相似文献   

12.
建立了Markov调制奇异随机微分方程的p阶指数稳定性和几乎必然指数稳定性的充要条件.  相似文献   

13.
通过构建李雅普偌夫函数的方法和利用半鞅收敛定理对一类随机时滞神经网络的全局指数稳定进行了分析,提出了易于判定随机时滞神经网络几乎必然指数稳定性新的代数判据,推广了[1]中的主要结论.  相似文献   

14.
General linear functional differential equations with infinite delay are considered. We first give an explicit criterion for positivity of the solution semigroup of linear functional differential equations with infinite delay and then a Perron‐Frobenius type theorem for positive equations. Next, a novel criterion for the exponential asymptotic stability of positive equations is presented. Furthermore, two sufficient conditions for the exponential asymptotic stability of positive equations subjected to structured perturbations and affine perturbations are provided. Finally, we applied the obtained results to problems of the exponential asymptotic stability of Volterra integrodifferential equations. To the best of our knowledge, most of the results of this paper are new.  相似文献   

15.
In this article, we study the exponential stability of singularly perturbed systems with time delay. By using vector delay inequalities and Lyapunov functions, exponential stability criteria are derived for both linear and some classes of nonlinear singularly perturbed systems with time delay. Examples are given to verify the stability criteria.  相似文献   

16.
变时滞的退化滞后型微分系统的稳定性   总被引:1,自引:0,他引:1  
主要研究了具有变时滞的退化时滞微分系统的稳定性.利用退化时滞微分系统的变易公式和Gronwall-Bellman积分不等式给出了该系统的指数估计以及稳定和指数渐近稳定的充分条件.  相似文献   

17.
In this paper, the robust global exponential stability is investigated for the discrete-time recurrent neural networks (RNNs) with time-varying interval delay. By choosing an augmented Lyapunov–Krasovskii functional, delay-dependent results guaranteeing the global exponential stability and the robust exponential stability of the concerned neural network are obtained. The results are shown to be a generalization of some previous results, and less conservative than the existing works. Two numerical examples are given to demonstrate the applicability of the proposed method.  相似文献   

18.
We study exponential stability of superstable systems in Hilbert spaces under perturbations. Formulas to calculate or to estimate the exponential growth bound of the perturbed systems are derived via which sufficient conditions on exponential stability are established. The obtained results are applied to a partial differential equation governing the vibration of a smart beam made of self-straining material. Several numerical simulations are given.  相似文献   

19.
Abstract

The problem of the mean square exponential stability for a class of discrete-time linear stochastic systems subject to independent random perturbations and Markovian switching is investigated. The case of the linear systems whose coefficients depend both to present state and the previous state of the Markov chain is considered. Three different definitions of the concept of exponential stability in mean square are introduced and it is shown that they are not always equivalent. One definition of the concept of mean square exponential stability is done in terms of the exponential stability of the evolution defined by a sequence of linear positive operators on an ordered Hilbert space. The other two definitions are given in terms of different types of exponential behavior of the trajectories of the considered system. In our approach the Markov chain is not prefixed. The only available information about the Markov chain is the sequence of probability transition matrices and the set of its states. In this way one obtains that if the system is affected by Markovian jumping the property of exponential stability is independent of the initial distribution of the Markov chain.

The definition expressed in terms of exponential stability of the evolution generated by a sequence of linear positive operators, allows us to characterize the mean square exponential stability based on the existence of some quadratic Lyapunov functions.

The results developed in this article may be used to derive some procedures for designing stabilizing controllers for the considered class of discrete-time linear stochastic systems in the presence of a delay in the transmission of the data.  相似文献   

20.
研究了具固定脉冲时刻的脉冲微分系统关于部分变元的指数稳定性,得到了保证零解关于部分变元指数稳定的充分条件,并给出了关于部分变元稳定性的一个新的判定准则.最后给出了其相关例子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号