首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The extended homogeneous balance method is used to construct exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation are successfully obtained, which contain soliton-like and periodic-like solutions This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

2.

The main aim of this paper is to study the exact traveling wave solutions of the generalized Kudryashov–Sinelshchikov equation by using the auxiliary equation method based on the conclusion of qualitative analysis. The advantage of this method is to choose the effective and proper auxiliary equation on the base of the behaviors and traits of solutions revealed by analysis of phase portraits to study the solution of differential equations. By applying the proposed approach to the generalized Kudryashov–Sinelshchikov equation, the number, behavior and existence of smooth and non-smooth traveling wave solutions are gained, at the same time, the new exact smooth solitary, periodic wave solutions and cusp solitary, periodic wave solutions are obtained. From the dynamic point of view, the behavior of traveling wave solutions is analyzed. The profile,type and the form of exact expression of traveling wave solutions are influenced by the order of nonlinear term and nonlinear terms.

  相似文献   

3.
Riccati-Bernoulli辅助常微分方程方法可以用来构造非线性偏微分方程的行波解.利用行波变换,将非线性偏微分方程化为非线性常微分方程, 再利用Riccati-Bernoulli方程将非线性常微分方程化为非线性代数方程组, 求解非线性代数方程组就能直接得到非线性偏微分方程的行波解.对Davey-Stewartson方程应用这种方法, 得到了该方程的精确行波解.同时也得到了该方程的一个Backlund变换.所得结果与首次积分法的结果作了比较.Riccati-Bernoulli辅助常微分方程方法是一种简单、有效地求解非线性偏微分方程精确解的方法.  相似文献   

4.
In this article, we construct the exact traveling wave solutions for nonlinear evolution equations in the mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV equations and the classical Boussinesq equations, by using a generalized (G'/G)-expansion method, where G satisfies the Jacobi elliptic equation. Many exact solutions in terms of Jacobi elliptic functions are obtained.  相似文献   

5.
A new rational auxiliary equation method for obtaining exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. Its effectiveness is evinced by obtaining exact solutions of a generalized Zakharov system, some of which are new. It is shown that the G/G and the generalized projective Ricatti expansion methods are special cases of the auxiliary equation method. Further, due the solutions obtained, four other new and practicable rational methods are deduced.  相似文献   

6.
An analytic study of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation is presented in this paper. The Riccati equation method combined with the generalized extended $(G''/G)$-expansion method is an interesting approach to find more general exact solutions of the nonlinear evolution equations in mathematical physics. We obtain the traveling wave solutions involving parameters, which are expressed by the hyperbolic and trigonometric function solutions. When the parameters are taken as special values, the solitary and periodic wave solutions are given. Comparison of our new results in this paper with the well-known results are given.  相似文献   

7.
In this work, we have constructed various types of soliton solutions of the generalized regularized long wave and generalized nonlinear Klein-Gordon equations by the using of the extended trial equation method. Some of the obtained exact traveling wave solutions to these nonlinear problems are the rational function, 1-soliton, singular, the elliptic integral functions $F, E, \Pi$ and the Jacobi elliptic function sn solutions. Also, all of the solutions are compared with the exact solutions in literature, and it is seen that some of the solutions computed in this paper are new wave solutions.  相似文献   

8.
In this research, we find the exact traveling wave solutions involving parameters of the generalized Hirota–Satsuma couple KdV system according to the modified simple equation method with the aid of Maple 16. When these parameters are taken special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the modified simple equation method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results and the well-known results will be presented.  相似文献   

9.
An effective characterization is given for a class of generalized nonlinear diffusion equations with power law dependent terms. Further, a new auxiliary equation ansatz is derived. Consequently, new exact traveling wave trigonometric function, solitary-like and Weierstrass elliptic solutions to a subclass are obtained by means of an auxiliary equation method and a generalized Riccati equation expansion method.  相似文献   

10.
In this article, we pay attention to the analytical method named, the improved F-expansion method combined with Riccati equation for finding the exact traveling wave solutions of the Benney–Luke equation and the Phi-4 equation. By means of this method we have explored three classes of explicit solutions-hyperbolic, trigonometric and rational solutions with some free parameters. When the parameters are taken as special values, the solitary wave solutions are originated from the traveling wave solutions. Our outcomes disclose that this method is very active and forthright way of formulating the exact solutions of nonlinear evolution equations arising in mathematical physics and engineering.  相似文献   

11.
In this paper, we employed the ansatz method, the exp-function method and the $\left( \frac{G^{\prime }}{G}\right) $-expansion method for the first time to obtain the exact and traveling wave solutions of the space time fractional Calogero Degasperis equation. As a result, we obtained some soliton and traveling wave solutions for this equation by means of proposed three analytical methods and the aid of commercial software Maple. The results show that these methods are effective and powerful mathematical tool for solving nonlinear FDEs arising in mathematical physics.  相似文献   

12.
The novel (G′/G)-expansion method is one of the powerful methods accredited at the present time for establishing exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, the method has been implemented to find the traveling wave solutions to the positive Gardner-KP equation. The efficiency of this method for finding exact and traveling wave solutions has been demonstrated. The obtained solutions have been compared with the solution obtained by other methods. The solutions have also been demonstrated by figures. It has been shown that the method is straightforward and an effective tool for solving NLEES that occur in applied mathematics, mathematical physics, and engineering.  相似文献   

13.
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schrödinger equation to illustrate the validity and advantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.  相似文献   

14.
With the aid of computer symbolic computation system Maple, the generalized auxiliary equation method is first applied to two nonlinear evolution equations, namely, the nonlinear elastic rod equation and (2 + 1)‐dimensional Boiti‐Leon‐Pempinelli equation. As a results, some new types of exact traveling wave solutions are obtained which include bell and kink profile solitary wave solutions, and triangular periodic wave solutions and singular solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
In this work, we investigate the traveling wave solutions for some generalized nonlinear equations: The generalized shallow water wave equation and the Whitham-Broer-Kaup model for dispersive long waves in the shallow water small-amplitude regime. We use the $G'/G$ expansion method to determine different soliton solutions of these models. The conditions of existence and uniqueness of exact solutions are also presented.  相似文献   

16.
本文引入行波解,并应用拓展双曲函数方法,求得(2+1)维Kadomtsev-Petviashvili(KP)方程的精确解.通过应用拓展双曲函数方法,可以得到关于方程的一类有理函数形式的孤立波,行波以及三角函数周期波的精确解,并且此方法适用于求解一大类非线性偏微分进化方程.  相似文献   

17.
This paper aims to present the generalized Kudryashov method to find the exact traveling wave solutions transmutable to the solitary wave solutions of the ubiquitous unsteady Korteweg–de Vries equation and its two famed alternatives, namely, the regularized long‐wave equation and the time regularized long‐wave equation. The exact analytic solutions of the studied equations are constructed explicitly in three forms, namely, hyperbolic, trigonometric, and rational function. The validity of our solutions is verified with MAPLE by putting them back into the original equation and found correct. Moreover, it has shown that the generalized Kudryashov method is an easy and reliable technique over the existing methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, the extended Riccati equation method is applied to seeking more general exact travelling wave solutions of the ZK equation. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. When the parameters are taken as special values, the solitary wave solutions are obtained from the hyperbolic function solutions. Similarly, the periodic wave solutions are also obtained from the trigonometric function solutions. The approach developed in this paper is effective and it may also be used for solving many other nonlinear evolution equations in mathematical physics.  相似文献   

19.
具任意次非线性项的Lienard方程的精确解及其应用   总被引:3,自引:0,他引:3       下载免费PDF全文
该文推导了具任意次非线性项的Liénard方程a″(ξ)+la(ξ)+ma\+q(ξ)+na\+\{2q-1\}(ξ)=0和\{a″(ξ)\}+ra′(ξ)+la(ξ)+ma\+q(ξ)+na\+\{2q-1\}(ξ)=0解的若干性质,通过适当变换,并结合假设待定法求出了它们的钟状和扭状显式精确解.据此,求出了一批具任意次非线性项的发展方程的钟状和扭状显式精确孤波解,其中包括广义BBM型方程、二维广义Klein Gordon方程、广义Pochhammer Chree方程和非线性波方程等.  相似文献   

20.
In this paper, we demonstrate the effectiveness of the new generalized (G′/G)-expansion method by seeking more exact solutions via the mKdV equation and the Gardner equations. The method is direct, concise and simple to implement compared to other existing methods. The traveling wave solutions obtained by this method are expressed in terms of hyperbolic, trigonometric and rational functions. The method shows a wide application for handling nonlinear wave equations. Moreover, the method reduces the large amount of calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号