首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for approximate solution of minimization problems for multivariable convex functions with convex constraints is proposed. The main idea consists in approximation of the objective function and constraints by piecewise linear functions and subsequent reduction of the initial convex programming problem to a problem of linear programming. We present algorithms constructing approximating polygons for some classes of single variable convex functions. The many-dimensional problem is reduced to a one-dimensional one by an inductive procedure. The efficiency of the method is illustrated by numerical examples.  相似文献   

2.
The problem of minimizing a convex twice differentiable function on the set-theoretic difference between a convex set and the union of several convex sets is considered. A generalization of Newton’s method for solving problems with convex constraints is proposed. The convergence of the algorithm is analyzed.  相似文献   

3.
针对电力系统中的一类凸经济调度问题,提出了随机ADMM算法,设计了周期循环更新规则和随机选择更新规则,证明了随机ADMM算法在周期循环更新规则下的收敛性,以及得出了在随机选择更新规则下按期望收敛的结论.数值实验结果表明该方法可以有效解决电力系统中的凸经济调度问题.  相似文献   

4.
In this paper, we consider an optimal zero-forcing beamformer design problem in multi-user multiple-input multiple-output broadcast channel. The minimum user rate is maximized subject to zero-forcing constraints and power constraint on each base station antenna array element. The natural formulation leads to a nonconvex optimization problem. This problem is shown to be equivalent to a convex optimization problem with linear objective function, linear equality and inequality constraints and quadratic inequality constraints. Here, the indirect elimination method is applied to reduce the convex optimization problem into an equivalent convex optimization problem of lower dimension with only inequality constraints. The primal-dual interior point method is utilized to develop an effective algorithm (in terms of computational efficiency) via solving the modified KKT equations with Newton method. Numerical simulations are carried out. Compared to algorithms based on a trust region interior point method and sequential quadratic programming method, it is observed that the method proposed is much superior in terms of computational efficiency.  相似文献   

5.
In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set, which is defined by the complement of the interior of a compact convex set X. We propose an inner approximation method to solve the problem in the case where X is not necessarily a polytope. The algorithm utilizes an inner approximation of X by a sequence of polytopes to generate relaxed problems. It is shown that every accumulation point of the sequence of optimal solutions of the relaxed problems is an optimal solution of the original problem.  相似文献   

6.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

7.
A class of nonconvex minimization problems can be classified as hidden convex minimization problems. A nonconvex minimization problem is called a hidden convex minimization problem if there exists an equivalent transformation such that the equivalent transformation of it is a convex minimization problem. Sufficient conditions that are independent of transformations are derived in this paper for identifying such a class of seemingly nonconvex minimization problems that are equivalent to convex minimization problems. Thus, a global optimality can be achieved for this class of hidden convex optimization problems by using local search methods. The results presented in this paper extend the reach of convex minimization by identifying its equivalent with a nonconvex representation.  相似文献   

8.
We consider a class of convex programming problems whose objective function is given as a linear function plus a convex function whose arguments are linear functions of the decision variables and whose feasible region is a polytope. We show that there exists an optimal solution to this class of problems on a face of the constraint polytope of dimension not more than the number of arguments of the convex function. Based on this result, we develop a method to solve this problem that is inspired by the simplex method for linear programming. It is shown that this method terminates in a finite number of iterations in the special case that the convex function has only a single argument. We then use this insight to develop a second algorithm that solves the problem in a finite number of iterations for an arbitrary number of arguments in the convex function. A computational study illustrates the efficiency of the algorithm and suggests that the average-case performance of these algorithms is a polynomial of low order in the number of decision variables. The work of T. C. Sharkey was supported by a National Science Foundation Graduate Research Fellowship. The work of H. E. Romeijn was supported by the National Science Foundation under Grant No. DMI-0355533.  相似文献   

9.
We consider mathematical programming problems with the so-called piecewise convex objective functions. A solution method for this interesting and important class of nonconvex problems is presented. This method is based on Newton??s law of universal gravitation, multicriteria optimization and Helly??s theorem on convex bodies. Numerical experiments using well known classes of test problems on piecewise convex maximization, convex maximization as well as the maximum clique problem show the efficiency of the approach.  相似文献   

10.
The paper deals with the S-technology, which reduces convex problems of quadratic programming to the solution of systems of several linear, and one convex, inequalities. A certain variant of the Fejér method is applied to these systems. In particular, the problem of the constructive separability of convex polyhedral sets by a layer of maximal thickness is solved. This algorithm plays an important role in problems of discriminant analysis.  相似文献   

11.
A global optimization method, QBB, for twice-differentiable NLPs (Non-Linear Programming) is developed to operate within a branch-and-bound framework and require the construction of a relaxed convex problem on the basis of the quadratic lower bounding functions for the generic nonconvex structures. Within an exhaustive simplicial division of the constrained region, the rigorous quadratic underestimation function is constructed for the generic nonconvex function structure by virtue of the maximal eigenvalue analysis of the interval Hessian matrix. Each valid lower bound of the NLP problem with the division progress is computed by the convex programming of the relaxed optimization problem obtained by preserving the convex or linear terms, replacing the concave term with linear convex envelope, underestimating the special terms and the generic terms by using their customized tight convex lower bounding functions or the valid quadratic lower bounding functions, respectively. The standard convergence properties of the QBB algorithm for nonconvex global optimization problems are guaranteed. The preliminary computation studies are presented in order to evaluate the algorithmic efficiency of the proposed QBB approach.  相似文献   

12.
For the correction of a convex programming problem with potentially inconsistent constraint system (an improper problem), we apply the residual method, which is a standard regularization procedure for ill-posed optimization models. A problem statement typical for the residual method is reduced to a minimization problem for an appropriate penalty function. We apply two classical penalty functions: the quadratic penalty function and the exact Eremin-Zangwill penalty function. For each of the approaches, we establish convergence conditions and bounds for the approximation error.  相似文献   

13.
单调优化是指目标函数与约束函数均为单调函数的全局优化问题.本文提出一种新的凸化变换方法把单调函数化为凸函数,进而把单调优化问题化为等价的凸极大或凹极小问题,然后采用Hoffman的外逼近方法来求得问题的全局最优解.我们把这种凸化方法同Tuy的Polyblock外逼近方法作了比较,通过数值比较可以看出本文提出的凸化的方法在收敛速度上明显优于Polyblock方法.  相似文献   

14.
A neural network is proposed for solving a convex quadratic bilevel programming problem. Based on Lyapunov and LaSalle theories, we prove strictly an important theoretical result that, for an arbitrary initial point, the trajectory of the proposed network does converge to the equilibrium, which corresponds to the optimal solution of a convex quadratic bilevel programming problem. Numerical simulation results show that the proposed neural network is feasible and efficient for a convex quadratic bilevel programming problem.  相似文献   

15.
In this paper an exterior point polynomial time algorithm for convex quadratic programming problems is proposed. We convert a convex quadratic program into an unconstrained convex program problem with a self-concordant objective function. We show that, only with duality, the Path-following method is valid. The computational complexity analysis of the algorithm is given.  相似文献   

16.
The method of open-loop control packages is a tool for stating the solvability of guaranteed closed-loop control problems under incomplete information on the observed states. In this paper, a solution method is specified for the problem of guaranteed closed-loop guidance of a linear control system to a convex target set at a prescribed point in time. It is assumed that the observed signal on the system’s states is linear and the set of its admissible initial states is finite. It is proved that the problem under consideration is equivalent to the problem of open-loop guidance of an extended linear control system to an extended convex target set. Using a separation theorem for convex sets, we derive a solvability criterion, which reduces to solving a finite-dimensional optimization problem. An illustrative example is considered.  相似文献   

17.
LaGO: a (heuristic) Branch and Cut algorithm for nonconvex MINLPs   总被引:1,自引:0,他引:1  
We present a Branch and Cut algorithm of the software package LaGO to solve nonconvex mixed-integer nonlinear programs (MINLPs). A linear outer approximation is constructed from a convex relaxation of the problem. Since we do not require an algebraic representation of the problem, reformulation techniques for the construction of the convex relaxation cannot be applied, and we are restricted to sampling techniques in case of nonquadratic nonconvex functions. The linear relaxation is further improved by mixed-integer-rounding cuts. Also box reduction techniques are applied to improve efficiency. Numerical results on medium size test problems are presented to show the efficiency of the method.  相似文献   

18.
The transonic potential flow problem is handled as a variational problem over a closed convex set which is given by a bound for the gas velocity and by a local entropy condition. It can be shown that the minimum problem has a solution though the functional need not be convex and the given set is not compact. Furthermore, the convergence of an approximation method (KATCHANOV'S method) for the solution to the corresponding variational inequality is proved.  相似文献   

19.
《Optimization》2012,61(2):215-235
This article deals with the problem of packing convex polytopes into a parallelepiped of minimal height. It is assumed that the polytopes are oriented, i.e. rotations are not permitted. A mathematical model of the problem is developed and peculiarities of them are addressed. Based on these peculiarities an exact method to compute local optimal solutions is constructed. This method uses a special modification of the Simplex method. Some examples are also given.  相似文献   

20.
This paper presents a method for constructing test problems with known global solutions for concave minimization under linear constraints with an additional convex constraint and for reverse convex programs with an additional convex constraint. The importance of such a construction can be realized from the fact that the well known d.c. programming problem can be formulated in this form. Then, the method is further extended to generate test problems with more than one convex constraint, tight or untight at the global solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号