首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the merit function technique to formulate a linearly constrained bilevel convex quadratic problem as a convex program with an additional convex-d.c. constraint. To solve the latter problem we approximate it by convex programs with an additional convex-concave constraint using an adaptive simplicial subdivision. This approximation leads to a branch-and-bound algorithm for finding a global optimal solution to the bilevel convex quadratic problem. We illustrate our approach with an optimization problem over the equilibrium points of an n-person parametric noncooperative game.  相似文献   

2.

We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.

  相似文献   

3.
In this paper, we propose a branch-and-bound algorithm for finding a global optimal solution for a nonconvex quadratic program with convex quadratic constraints (NQPCQC). We first reformulate NQPCQC by adding some nonconvex quadratic constraints induced by eigenvectors of negative eigenvalues associated with the nonconvex quadratic objective function to Shor’s semidefinite relaxation. Under the assumption of having a bounded feasible domain, these nonconvex quadratic constraints can be further relaxed into linear ones to form a special semidefinite programming relaxation. Then an efficient branch-and-bound algorithm branching along the eigendirections of negative eigenvalues is designed. The theoretic convergence property and the worst-case complexity of the proposed algorithm are proved. Numerical experiments are conducted on several types of quadratic programs to show the efficiency of the proposed method.  相似文献   

4.
Image recovery problems can be solved using optimization techniques. They lead often to the solution of either a large-scale convex quadratic program or equivalently a nondifferentiable minimization problem. To solve the quadratic program, we use an infeasible predictor-corrector interior-point method, presented in the more general framework of monotone LCP. The algorithm has polynomial complexity and it converges with asymptotic quadratic rate. When implementing the method to recover images, we take advantage of the underlying sparsity of the problem. We obtain good performances, that we assess by comparing the method with a variable-metric proximal bundle algorithm applied to the solution of equivalent nonsmooth problem.  相似文献   

5.
根据广义乘子法的思想,将具有等式约束和非负约束的凸二次规划问题转化只有非负约束的简单凸二次规划,通过简单凸二次规划来得到解等式约束一非负约束的凸二次规划新算法,新算法不用求逆矩阵,这样可充分保持矩阵的稀疏性,用来解大规模稀疏问题,数值结果表明:在微机486/33上就能解较大规模的凸二次规划。  相似文献   

6.
In this paper we propose an iterative algorithm for solving a convex quadratic program with one equality constraint and bounded variables. At each iteration, a separable convex quadratic program with the same constraint set is solved. Two variants are analyzed: one that uses an exact line search, and the other a unit step size. Preliminary testing suggests that this approach is efficient for problems with diagonally dominant matrices. This work was supported by a research grant from the France-Quebec exchange program and also by NSERC Grant No. A8312. The first author was supported by a scholarship from Transport Canada while doing this research.  相似文献   

7.
Global error bounds for possibly degenerate or nondegenerate monotone affine variational inequality problems are given. The error bounds are on an arbitrary point and are in terms of the distance between the given point and a solution to a convex quadratic program. For the monotone linear complementarity problem the convex program is that of minimizing a quadratic function on the nonnegative orthant. These bounds may form the basis of an iterative quadratic programming procedure for solving affine variational inequality problems. A strong upper semicontinuity result is also obtained which may be useful for finitely terminating any convergent algorithm by periodically solving a linear program.This material is based on research supported by Air Force Office of Scientific Research Grant AFOSR-89-0410 and National Science Foundation Grants CCR-9101801 and CCR-9157632.  相似文献   

8.
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the best of our knowledge.  相似文献   

9.
In this article, we consider the problem of finding a solution of a nonsmooth constrained (and not necessarily square) system of equations. We first reformulate the original problem as an equivalent system of equations with nonnegative constraints, and then present a smoothing projected Levenberg-Marquardt type algorithm to solve the reformulated system, which solves a strictly convex quadratic program at each iteration. We show that this algorithm not only converges globally, but also converges locally superlinearly under an error bound assumption that is much weaker than the standard nonsingularity condition. Some numerical results for the presented algorithm indicate that the algorithm works quite well in practice.  相似文献   

10.
《Optimization》2012,61(7):1099-1116
In this article we study support vector machine (SVM) classifiers in the face of uncertain knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM classification by employing robust optimization. We present knowledge-based SVM classifiers with uncertain knowledge sets using convex quadratic optimization duality. We show that the knowledge-based SVM, where prior knowledge is in the form of uncertain linear constraints, results in an uncertain convex optimization problem with a set containment constraint. Using a new extension of Farkas' lemma, we reformulate the robust counterpart of the uncertain convex optimization problem in the case of interval uncertainty as a convex quadratic optimization problem. We then reformulate the resulting convex optimization problems as a simple quadratic optimization problem with non-negativity constraints using the Lagrange duality. We obtain the solution of the converted problem by a fixed point iterative algorithm and establish the convergence of the algorithm. We finally present some preliminary results of our computational experiments of the method.  相似文献   

11.
 We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number, N, of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approximate center. We show that, in terms of total number of addition and translation of cuts, our algorithm has the same polynomial worst case complexity as theirs [3]. However, the total number of steps, where steps consist of (damped) Newton steps, function evaluations and arithmetic operations, required to update from one approximate center to another is , where ε is the radius of the largest ball contained in the feasible set. In the second case, the convex set is defined by an infinite number of certain strongly convex quadratic inequalities. We adapt the same quadratic cut method for the first case to the second one. We show that in this case the quadratic cut algorithm is a fully polynomial approximation scheme. Furthermore, we show that, at each iteration, k, the total number steps (as described above) required to update from one approximate center to another is at most , with ε as defined above. Received: April 2000 / Accepted: June 2002 Published online: September 5, 2002 Key words. convex quadratic feasibility problem – interior-point methods – analytic center – quadratic cuts – potential function  相似文献   

12.
n人有限博弈的混合策略组合(p1^*,…,pn^*)为Nash均衡,如果其中每一策略pi^*都是参与人i(i=1,2,…,n),对其它n-1个参与人策略组合(p1^*,…,pi 1^*,pi-1^*,…,pn^*)的最优反应,即存在n个概率向量p1^*,…,pn^*使得对i=1,2,…,n及任意k1维概率向量pi恒有vi(p1^*,…,pn^*…)小于vi(pi^*,…,pi-1^*,pi 1^*,…pn^*),其中vi为参与人i的支付函数,pi=(pil,…,piki))为ki维概率向量,即满足条件,pij大于等于0,∑kij=1pij=1,ki是参与人i的策略空间中策略个数,i=1,2,…,n,由此,Nash均衡的求解可化为下列优化问题:求n个概率向量pi^*,…,pn^8,使得对i=1,2,…,n及任意ki维的概率向量pi满足maxxvi(P1^*,…,pi-1^*,pi,Pi 1^*,…,pn^*)=vi(P1^*,,…,Pn^*)。  相似文献   

13.
This paper studies a statistical problem called instrumental variable quantile regression (IVQR). We model IVQR as a convex quadratic program with complementarity constraints and—although this type of program is generally NP-hard—we develop a branch-and-bound algorithm to solve it globally. We also derive bounds on key variables in the problem, which are valid asymptotically for increasing sample size. We compare our method with two well known global solvers, one of which requires the computed bounds. On random instances, our algorithm performs well in terms of both speed and robustness.  相似文献   

14.
Motivated by weakly convex optimization and quadratic optimization problems, we first show that there is no duality gap between a difference of convex (DC) program over DC constraints and its associated dual problem. We then provide certificates of global optimality for a class of nonconvex optimization problems. As an application, we derive characterizations of robust solutions for uncertain general nonconvex quadratic optimization problems over nonconvex quadratic constraints.  相似文献   

15.
This paper evaluates an algorithm for solving network flow optimization problems with quadratic cost functions. Strategies for fast implementation are discussed and the results of extensive numerical tests are given. The performance of the algorithm measured by CPU time is compared with that of the convex simplex method specialized for quadratic network programming. Performance of the two methods is analysed with respect to network size and density, and other parameters of interest. The algorithm is shown to perform significantly better on the majority of problems. We also show how the algorithm may be used to solve non-linear convex network optimization problems by the use of sequential quadratic programming.  相似文献   

16.
In this paper, we show that an analogue of the classical conjugate gradient method converges linearly when applied to solving the problem of unconstrained minimization of a strictly convex quadratic spline. Since a strictly convex quadratic program with simple bound constraints can be reformulated as unconstrained minimization of a strictly convex quadratic spline, the conjugate gradient method is used to solve the unconstrained reformulation and find the solution of the original quadratic program. In particular, if the solution of the original quadratic program is nondegenerate, then the conjugate gradient method finds the solution in a finite number of iterations. This author's research is partially supported by the NASA/Langley Research Center under grant NCC-1-68 Supplement-15.  相似文献   

17.
Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP), i.e. we reformulate (MQP) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (MQP). Computational experiences are carried out with instances of (MQP) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1?h of CPU time by a standard solver.  相似文献   

18.
We propose an SQP-type algorithm for solving nonlinear second-order cone programming (NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which the constraints involve linear approximations of the constraint functions in the original problem and the objective function is a convex quadratic function. Those subproblems can be transformed into linear SOCP problems, for which efficient interior point solvers are available. We establish global convergence and local quadratic convergence of the algorithm under appropriate assumptions. We report numerical results to examine the effectiveness of the algorithm. This work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science.  相似文献   

19.
In this paper, we consider the case of downside risk measures with cardinality and bounding constraints in portfolio selection. These constraints limit the amount of capital to be invested in each asset as well as the number of assets composing the portfolio. While the standard Markowitz’s model is a convex quadratic program, this new model is a NP-hard mixed integer quadratic program. Realizing the computational intractability for this class of problems, especially large-scale problems, we first reformulate it as a DC program with the help of exact penalty techniques in Difference of Convex functions (DC) programming and then solve it by DC Algorithms (DCA). To check globality of computed solutions, a global method combining the local algorithm DCA with a Branch-and-Bound algorithm is investigated. Numerical simulations show that DCA is an efficient and promising approach for the considered problem.   相似文献   

20.
We present an algorithm which solves a convex program with faithfully convex (not necessarily differentiable) constraints. While finding a feasible starting point, the algorithm reduces the program to an equivalent program for which Slater's condition is satisfied. Included are algorithms for calculating various objects which have recently appeared in the literature. Stability of the algorithm is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号