首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A proximal bundle method is presented for minimizing a nonsmooth convex functionf. At each iteration, it requires only one approximate evaluation off and its -subgradient, and it finds a search direction via quadratic programming. When applied to the Lagrangian decomposition of convex programs, it allows for inexact solutions of decomposed subproblems; yet, increasing their required accuracy automatically, it asymptotically finds both the primal and dual solutions. It is an implementable approximate version of the proximal point algorithm. Some encouraging numerical experience is reported.The author thanks two anonymous referees for their valuable comments.Research supported by the State Committee for Scientific Research under Grant 8550502206.  相似文献   

2.
In this paper, we present a smoothing sequential quadratic programming to compute a solution of a quadratic convex bilevel programming problem. We use the Karush-Kuhn-Tucker optimality conditions of the lower level problem to obtain a nonsmooth optimization problem known to be a mathematical program with equilibrium constraints; the complementary conditions of the lower level problem are then appended to the upper level objective function with a classical penalty. These complementarity conditions are not relaxed from the constraints and they are reformulated as a system of smooth equations by mean of semismooth equations using Fisher-Burmeister functional. Then, using a quadratic sequential programming method, we solve a series of smooth, regular problems that progressively approximate the nonsmooth problem. Some preliminary computational results are reported, showing that our approach is efficient.  相似文献   

3.
In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.  相似文献   

4.
In this paper we present an algorithm for solving nonlinear programming problems where the objective function contains a possibly nonsmooth convex term. The algorithm successively solves direction finding subproblems which are quadratic programming problems constructed by exploiting the special feature of the objective function. An exact penalty function is used to determine a step-size, once a search direction thus obtained is judged to yield a sufficient reduction in the penalty function value. The penalty parameter is adjusted to a suitable value automatically. Under appropriate assumptions, the algorithm is shown to produce an approximate optimal solution to the problem with any desirable accuracy in a finite number of iterations.  相似文献   

5.
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these feasible solutions and the best resulting solution provides an estimate for the optimal solution to the quadratic program with complementarity constraints. Computational testing of such an approach is described for a problem arising in portfolio optimization.Research supported in part by the National Science Foundations VIGRE Program (Grant DMS-9983646).Research partially supported by NSF Grant number CCR-9901822.  相似文献   

6.
In this paper, a multiobjective quadratic programming problem having fuzzy random coefficients matrix in the objective and constraints and the decision vector are fuzzy pseudorandom variables is considered. First, we show that the efficient solutions of fuzzy quadratic multiobjective programming problems are resolved into series-optimal-solutions of relative scalar fuzzy quadratic programming. Some theorems are proved to find an optimal solution of the relative scalar quadratic multiobjective programming with fuzzy coefficients, having decision vectors as fuzzy variables. At the end, numerical examples are illustrated in the support of the obtained results.  相似文献   

7.
In multi-objective geometric programming problem there are more than one objective functions. There is no single optimal solution which simultaneously optimizes all the objective functions. Under these conditions the decision makers always search for the most “preferred” solution, in contrast to the optimal solution. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper ??-constraint method has been applied to find the non-inferior solution. A brief solution procedure of ??-constraint method has been presented to find the non-inferior solution of the multi-objective programming problems. Further, the multi-objective programming problems is solved by the fuzzy programming technique to find the optimal compromise solution. Finally, two numerical examples are solved by both the methods and compared with their obtained solutions.  相似文献   

8.
A method of constructing test problems for linear bilevel programming problems is presented. The method selects a vertex of the feasible region, far away from the solution of the relaxed linear programming problem, as the global solution of the bilevel problem. A predetermined number of constraints are systematically selected to be assigned to the lower problem. The proposed method requires only local vertex search and solutions to linear programs.  相似文献   

9.
Quadratic programming problems are applied in an increasing variety of practical fields. As ambiguity and vagueness are natural and ever-present in real-life situations requiring solutions, it makes perfect sense to attempt to address them using fuzzy quadratic programming problems. This work presents two methods used to solve linear problems with uncertainties in the set of constraints, which are extended in order to solve fuzzy quadratic programming problems. Also, a new quadratic parametric method is proposed and it is shown that this proposal contains all optimal solutions obtained by the extended approaches with their satisfaction levels. A few numerical examples are presented to illustrate the proposed method.  相似文献   

10.
For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression and aggregation techniques of proximal bundle methods. On the other hand, the filter criterion for accepting a candidate point as the new iterate is sometimes easier to satisfy than the usual descent condition in bundle methods. Some encouraging preliminary computational results are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号