首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider non-linear Schrödinger equations of the following type: $$\begin{aligned} \left\{ \begin{array}{l} -\Delta u(x) + V(x)u(x)-q(x)|u(x)|^\sigma u(x) = \lambda u(x), \quad x\in \mathbb{R }^N \\ u\in H^1(\mathbb{R }^N)\setminus \{0\}, \end{array} \right. \end{aligned}$$ where $N\ge 1$ and $\sigma >0$ . We will concentrate on the case where both $V$ and $q$ are periodic, and we will analyse what happens for different values of $\lambda $ inside a spectral gap $]\lambda ^-,\lambda ^+[$ . We derive both the existence of multiple orbits of solutions and the bifurcation of solutions when $\lambda \nearrow \lambda ^+$ . Thereby we use the corresponding energy function ${I_\lambda }$ and we derive a new variational characterization of multiple critical levels for such functionals: in this way we get multiple orbits of solutions. One main advantage of our new view on some specific critical values $c_0(\lambda )\le c_1(\lambda )\le \cdots \le c_n(\lambda )\le \cdots $ is a multiplicity result telling us something about the number of critical points with energies below $c_n(\lambda )$ , even if for example two of these values $c_i(\lambda )$ and $c_j(\lambda )$ ( $0\le i<j\le n$ ) coincide. Let us close this summary by mentioning another main advantage of our variational characterization of critical levels: we present our result in an abstract setting that is suitable for other problems and we give some hints about such problems (like the case corresponding to a Coulomb potential $V$ ) at the end of the present paper.  相似文献   

2.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

3.
The initial-value problem for $$u_t=-\Delta^2 u - \mu\Delta u - \lambda \Delta |\nabla u|^2 + f(x)\qquad \qquad (\star)$$ is studied under the conditions ${{\frac{\partial}{\partial\nu}} u={\frac{\partial}{\partial\nu}} \Delta u=0}$ on the boundary of a bounded convex domain ${\Omega \subset {\mathbb{R}}^n}$ with smooth boundary. This problem arises in the modeling of the evolution of a thin surface when exposed to molecular beam epitaxy. Correspondingly the physically most relevant spatial setting is obtained when n?=?2, but previous mathematical results appear to concentrate on the case n?=?1. In this work, it is proved that when n??? 3,??? ?? 0, ???>?0 and ${f \in L^\infty(\Omega)}$ satisfies ${{\int_\Omega} f \ge 0}$ , for each prescribed initial distribution ${u_0 \in L^\infty(\Omega)}$ fulfilling ${{\int_\Omega} u_0 \ge 0}$ , there exists at least one global weak solution ${u \in L^2_{loc}([0,\infty); W^{1,2}(\Omega))}$ satisfying ${{\int_\Omega} u(\cdot,t) \ge 0}$ for a.e. t?>?0, and moreover, it is shown that this solution can be obtained through a Rothe-type approximation scheme. Furthermore, under an additional smallness condition on??? and ${\|f\|_{L^\infty(\Omega)}}$ , it is shown that there exists a bounded set ${S\subset L^1(\Omega)}$ which is absorbing for ${(\star)}$ in the sense that for any such solution, we can pick T?>?0 such that ${e^{2\lambda u(\cdot,t)}\in S}$ for all t?>?T, provided that ?? is a ball and u 0 and f are radially symmetric with respect to x?=?0. This partially extends similar absorption results known in the spatially one-dimensional case. The techniques applied to derive appropriate compactness properties via a priori estimates include straightforward testing procedures which lead to integral inequalities involving, for instance, the functional ${{\int_\Omega} e^{2\lambda u}dx}$ , but also the use of a maximum principle for second-order elliptic equations.  相似文献   

4.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

5.
6.
We study ${W^{2,m(\cdot)}_{loc}}$ regularity for local weak solutions of p(·)-Laplace equations where ${p\in C^1(\Omega) \cap C(\overline{\Omega})}$ and ${\min_{x\in \overline{\Omega}} p(x) > 1}$ .  相似文献   

7.
Classical solutions of the Oseen problem are studied on an exterior domain Ω with Ljapunov boundary in R 3. It is proved a maximum modulus estimate of the following form: If ${{\bf u}\in C^2(\Omega)^3\cap C^0(\overline \Omega)^3}$ and ${p \in C^1(\Omega ), -\Delta {\bf u}+2\lambda \partial_1 {\bf u}+\nabla p=0, \nabla \cdot {\bf u}=0}$ in Ω, and if ${|{\bf u}| \le M}$ on ${\partial \Omega , \limsup |{\bf u}({\bf x})|\le M}$ as ${|{\bf x}|\to \infty }$ , then ${|{\bf u}({\bf x})|\le c M}$ in Ω. Here the constant c depends only on Ω and λ.  相似文献   

8.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

9.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

10.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

11.
Let $\mathcal{R }$ be a prime ring of characteristic different from $2, \mathcal{Q }_r$ the right Martindale quotient ring of $\mathcal{R }, \mathcal{C }$ the extended centroid of $\mathcal{R }, \mathcal{I }$ a nonzero left ideal of $\mathcal{R }, F$ a nonzero generalized skew derivation of $\mathcal{R }$ with associated automorphism $\alpha $ , and $n,k \ge 1$ be fixed integers. If $[F(r^n),r^n]_k=0$ for all $r \in \mathcal{I }$ , then there exists $\lambda \in \mathcal{C }$ such that $F(x)=\lambda x$ , for all $x\in \mathcal{I }$ . More precisely one of the following holds: (1) $\alpha $ is an $X$ -inner automorphism of $\mathcal{R }$ and there exist $b,c \in \mathcal{Q }_r$ and $q$ invertible element of $\mathcal{Q }_r$ , such that $F(x)=bx-qxq^{-1}c$ , for all $x\in \mathcal{Q }_r$ . Moreover there exists $\gamma \in \mathcal{C }$ such that $\mathcal{I }(q^{-1}c-\gamma )=(0)$ and $b-\gamma q \in \mathcal{C }$ ; (2) $\alpha $ is an $X$ -outer automorphism of $\mathcal{R }$ and there exist $c \in \mathcal{Q }_r, \lambda \in \mathcal{C }$ , such that $F(x)=\lambda x-\alpha (x)c$ , for all $x\in \mathcal{Q }_r$ , with $\alpha (\mathcal{I })c=0$ .  相似文献   

12.
Denoting by ${\varepsilon\subseteq\mathbb{R}^2}$ the set of the pairs ${(\lambda_1(\Omega),\,\lambda_2(\Omega))}$ for all the open sets ${\Omega\subseteq\mathbb{R}^N}$ with unit measure, and by ${\Theta\subseteq\mathbb{R}^N}$ the union of two disjoint balls of half measure, we give an elementary proof of the fact that ${\partial\varepsilon}$ has horizontal tangent at its lowest point ${(\lambda_1(\Theta),\,\lambda_2(\Theta))}$ .  相似文献   

13.
The existence of a global branch of positive spherically symmetric solutions ${\{(\lambda,u(\lambda)):\lambda\in(0,\infty)\}}$ of the semilinear elliptic equation $$\Delta u - \lambda u + V(x)|u|^{p-1}u = 0 \quad \text{in}\,\mathbb{R}^N\,\text{with}\,N\geq3$$ is proved for ${1 < p < 1+\frac{4-2b}{N-2}}$ , where ${b\in(0,2)}$ is such that the radial function V vanishes at infinity like |x|?b . V is allowed to be singular at the origin but not worse than |x|?b . The mapping ${\lambda\mapsto u(\lambda)}$ is of class ${C^r((0,\infty),H^1(\mathbb{R}^N))}$ if ${V\in C^r(\mathbb{R}^N\setminus\{0\},\mathbb{R})}$ , for r = 0, 1. Further properties of regularity and decay at infinity of solutions are also established. This work is a natural continuation of previous results by Stuart and the author, concerning the existence of a local branch of solutions of the same equation for values of the bifurcation parameter λ in a right neighbourhood of λ = 0. The variational structure of the equation is deeply exploited and the global continuation is obtained via an implicit function theorem.  相似文献   

14.
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation $$\left \{\begin{array}{ll} -\Delta_p u + u = f \qquad {\rm in} \,\Omega,\\ \frac{\partial u}{\partial \nu} = 0 \qquad \qquad \,\,\,\,\,\,\,\,\,\, {\rm on} \,\partial \Omega, \end{array}\right.$$ when ${f \in L^q(\Omega), p > 2}$ and q ≥ 2. If u is a weak solution in ${W^{1, p}(\Omega)}$ , we obtain estimates for u in the Nikolskii space ${\mathcal{N}^{1+2/r,r}(\Omega)}$ , where r = q(p ? 2) + 2, in terms of the L q norm of f. In particular, due to imbedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that ${\|u\|^r_{W^{1 + 2/r - \epsilon, r}(\Omega)} \leq C(\|f\|_{L^q(\Omega)}^q + \| f\|^{r}_{L^q(\Omega)} + \|f\|^{2r/p}_{L^q(\Omega)})}$ for every ${\epsilon > 0}$ sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in ${W^{1,r}(\Omega)}$ .  相似文献   

15.
Let $ \mathcal{L} $ be a Hilbert space, and let $ \mathcal{H} $ be a Pontryagin space. For every self-adjoint linear relation $ \tilde{A} $ in $ \mathcal{H} \oplus \mathcal{L} $ , the pair $ \{ I + \lambda \psi (\lambda ),\,\psi (\lambda )\} $ where $ \psi (\lambda ) $ is the compressed resolvent of $ \tilde{A} $ , is a normalized generalized Nevanlinna pair. Conversely, every normalized generalized Nevanlinna pair is shown to be associated with some self-adjoint linear relation $ \tilde{A} $ in the above sense. A functional model for this selfadjoint linear relation $ \tilde{A} $ is constructed.  相似文献   

16.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

17.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

18.
We show weak* in measures on $\bar{\Omega }$ / weak- $L^1$ sequential continuity of $u\mapsto f(x,\nabla u):W^{1,p}(\Omega ;\mathbb{R }^m)\rightarrow L^1(\Omega )$ , where $f(x,\cdot )$ is a null Lagrangian for $x\in \Omega $ , it is a null Lagrangian at the boundary for $x\in \partial \Omega $ and $|f(x,A)|\le C(1+|A|^p)$ . We also give a precise characterization of null Lagrangians at the boundary in arbitrary dimensions. Our results explain, for instance, why $u\mapsto \det \nabla u:W^{1,n}(\Omega ;\mathbb{R }^n)\rightarrow L^1(\Omega )$ fails to be weakly continuous. Further, we state a new weak lower semicontinuity theorem for integrands depending on null Lagrangians at the boundary. The paper closes with an example indicating that a well-known result on higher integrability of determinant by Müller (Bull. Am. Math. Soc. New Ser. 21(2): 245–248, 1989) need not necessarily extend to our setting. The notion of quasiconvexity at the boundary due to J.M. Ball and J. Marsden is central to our analysis.  相似文献   

19.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

20.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号