首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

3.
4.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

5.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

6.
Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions $$\left\{ \begin{array}{lll} u_{tt} ={\rm div} (\mathcal{A} \nabla u)-\gamma (x,u_t), && \quad {\rm in} \; (0, \infty) \times \Omega,\\ u(0, \cdot)=f, \, u_t(0,\cdot)=g, && \quad {\rm in}\; \Omega, \\ u_{tt} + \beta \partial^ \mathcal{A}_\nu u+c(x)u+ \delta (x,u_t)-q \beta \Lambda_{\rm LB} u=0,&& \quad {\rm on} \;(0, \infty ) \times \partial \Omega . \end{array}\right. $$ for t ≥  0 and ${x \in \Omega \subset \mathbb{R}^N}$ ; the last equation holds on the boundary . Here ${\mathcal{A}= \{a_{ij}(x)\}_{ij}}$ is a real, hermitian, uniformly positive definite N × N matrix; ${\beta \in C(\partial \Omega)}$ , with β > 0; ${\gamma:\Omega \times \mathbb{R} \to \mathbb{R}; \delta:\partial \Omega \times \mathbb{R} \to \mathbb{R}; \,c:\partial \Omega \to \mathbb{R}; \, q \ge 0, \Lambda_{\rm LB}}$ is the Laplace–Beltrami operator on , and ${\partial^\mathcal{A}_\nu u}$ is the conormal derivative of u with respect to ${\mathcal{A}}$ ; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients ${\mathcal{A},\,\beta,\,\gamma,\,\delta,\,c,\,q}$ , and the initial conditions fg. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.  相似文献   

7.
In this article, we study parabolic stochastic partial differential equations (see Eq. (1.1)) defined on arbitrary bounded domain $\mathcal{O }\subset \mathbb{R }^d$ admitting the Hardy inequality 0.1 $$\begin{aligned} \int _{\mathcal{O }}|\rho ^{-1}g|^2\,\text{ d}x\le C\int _{\mathcal{O }}|g_x|^2 \text{ d}x, \quad \forall g\in C^{\infty }_0(\mathcal{O }), \end{aligned}$$ where $\rho (x)=\text{ dist}(x,\partial \mathcal{O }).$ Existence and uniqueness results are given in weighted Sobolev spaces $\mathfrak{H }_{p,\theta }^{\gamma }(\mathcal{O },T),$ where $p\in [2,\infty ), \gamma \in \mathbb{R }$ is the number of derivatives of solutions and $\theta $ controls the boundary behavior of solutions (see Definition 2.5). Furthermore, several Hölder estimates of the solutions are also obtained. It is allowed that the coefficients of the equations blow up near the boundary.  相似文献   

8.
For ?? > 0, the Banach space ${\mathcal{F}_{\alpha}}$ is defined as the collection of functions f which can be represented as integral transforms of an appropriate kernel against a Borel measure defined on the unit circle T. Let ?? be an analytic self-map of the unit disc D. The map ?? induces a composition operator on ${\mathcal{F}_{\alpha}}$ if ${C_{\Phi}(f) = f \circ \Phi \in \mathcal{F}_{\alpha}}$ for any function ${f \in \mathcal{F}_{\alpha}}$ . Various conditions on ?? are given, sufficient to imply that C ?? is bounded on ${\mathcal{F}_{\alpha}}$ , in the case 0 < ?? < 1. Several of the conditions involve ???? and the theory of multipliers of the space ${\mathcal{F}_{\alpha}}$ . Relations are found between the behavior of C ?? and the membership of ?? in the Dirichlet spaces. Conditions given in terms of the generalized Nevanlinna counting function are shown to imply that ?? induces a bounded composition operator on ${\mathcal{F}_{\alpha}}$ , in the case 1/2 ?? ?? < 1. For such ??, examples are constructed such that ${\| \Phi \|_{\infty} = 1}$ and ${C_{\Phi}: \mathcal{F}_{\alpha} \rightarrow \mathcal{F}_{\alpha}}$ is bounded.  相似文献   

9.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

10.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

11.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

12.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

13.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

14.
Let Ω be a cone in ${\mathbb {R}^{n}}$ with n ≥? 2. For every fixed ${\alpha \in \mathbb {R}}$ we find the best constant in the Rellich inequality ${\int\nolimits_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx \ge C\int\nolimits_{\Omega}|x|^{\alpha-4}|u|^{2}dx}$ for ${u \in C^{2}_{c}(\overline\Omega\setminus\{0\})}$ . We also estimate the best constant for the same inequality on ${C^{2}_{c}(\Omega)}$ . Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.  相似文献   

15.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

16.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

17.
We consider regular oblique derivative problem in cylinder Q T ?=????× (0, T), ${\Omega\subset {\mathbb R}^n}$ for uniformly parabolic operator ${{{\mathfrak P}}=D_t- \sum_{i,j=1}^n a^{ij}(x)D_{ij}}$ with VMO principal coefficients. Its unique strong solvability is proved in Manuscr. Math. 203?C220 (2000), when ${{{\mathfrak P}}u\in L^p(Q_T)}$ , ${p\in(1,\infty)}$ . Our aim is to show that the solution belongs to the generalized Sobolev?CMorrey space ${W^{2,1}_{p,\omega}(Q_T)}$ , when ${{{\mathfrak P}}u\in L^{p,\omega} (Q_T)}$ , ${p\in (1, \infty)}$ , ${\omega(x,r):\,{\mathbb R}^{n+1}_+\to {\mathbb R}_+}$ . For this goal an a priori estimate is obtained relying on explicit representation formula for the solution. Analogous result holds also for the Cauchy?CDirichlet problem.  相似文献   

18.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

19.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

20.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号