首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we show that the convergence behavior of the DIviding RECTangles (DIRECT) algorithm is sensitive to additive scaling of the objective function. We illustrate this problem with a computation and show how the algorithm can be modified to eliminate this sensitivity.  相似文献   

2.
In this article, we aim to extend the firefly algorithm (FA) to solve bound constrained mixed-integer nonlinear programming (MINLP) problems. An exact penalty continuous formulation of the MINLP problem is used. The continuous penalty problem comes out by relaxing the integrality constraints and by adding a penalty term to the objective function that aims to penalize integrality constraint violation. Two penalty terms are proposed, one is based on the hyperbolic tangent function and the other on the inverse hyperbolic sine function. We prove that both penalties can be used to define the continuous penalty problem, in the sense that it is equivalent to the MINLP problem. The solutions of the penalty problem are obtained using a variant of the metaheuristic FA for global optimization. Numerical experiments are given on a set of benchmark problems aiming to analyze the quality of the obtained solutions and the convergence speed. We show that the firefly penalty-based algorithm compares favourably with the penalty algorithm when the deterministic DIRECT or the simulated annealing solvers are invoked, in terms of convergence speed.  相似文献   

3.
In this paper, we discuss the performance of the DIRECT global optimization algorithm on problems with linear scaling. We show with computations that the performance of DIRECT can be affected by linear scaling of the objective function. We also provide a theoretical result which shows that DIRECT does not perform well when the absolute value of the objective function is large enough. Then we present DIRECT-a, a modification of DIRECT, to eliminate the sensitivity to linear scaling of the objective function. We prove theoretically that linear scaling of the objective function does not affect the performance of DIRECT-a. Similarly, we prove that some modifications of DIRECT are also unaffected by linear scaling of the objective function, while the original DIRECT algorithm is sensitive to linear scaling. Numerical results in this paper show that DIRECT-a is more robust than the original DIRECT algorithm, which support the theoretical results. Numerical results also show that careful choices of the parameter ε can help DIRECT perform well when the objective function is poorly linearly scaled.  相似文献   

4.
We consider probabilistically constrained linear programs with general distributions for the uncertain parameters. These problems involve non-convex feasible sets. We develop a branch-and-bound algorithm that searches for a global optimal solution to this problem by successively partitioning the non-convex feasible region and by using bounds on the objective function to fathom inferior partition elements. This basic algorithm is enhanced by domain reduction and cutting plane strategies to reduce the size of the partition elements and hence tighten bounds. The proposed branch-reduce-cut algorithm exploits the monotonicity properties inherent in the problem, and requires solving linear programming subproblems. We provide convergence proofs for the algorithm. Some illustrative numerical results involving problems with discrete distributions are presented.  相似文献   

5.
A new algorithm to solve nonconvex NLP problems is presented. It is based on the solution of two problems. The reformulated problem RP is a suitable reformulation of the original problem and involves convex terms and concave univariate terms. The main problem MP is a nonconvex NLP that outer-approximates the feasible region and underestimate the objective function. MP involves convex terms and terms which are the products of concave univariate functions and new variables. Fixing the variables in the concave terms, a convex NLP that overestimates the feasible region and underestimates the objective function is obtained from the MP. Like most of the deterministic global optimization algorithms, bounds on all the variables in the nonconvex terms must be provided. MP forces the objective value to improve and minimizes the difference of upper and lower bound of all the variables either to zero or to a positive value. In the first case, a feasible solution of the original problem is reached and the objective function is improved. In general terms, the second case corresponds to an infeasible solution of the original problem due to the existence of gaps in some variables. A branching procedure is performed in order to either prove that there is no better solution or reduce the domain, eliminating the local solution of MP that was found. The MP solution indicates a key point to do the branching. A bound reduction technique is implemented to accelerate the convergence speed. Computational results demonstrate that the algorithm compares very favorably to other approaches when applied to test problems and process design problems. It is typically faster and it produces very accurate results.  相似文献   

6.
《Optimization》2012,61(6):839-860
This paper introduces an efficient approach to the solution of the linear mini-max approximation problem. The classical nonlinear minimax problem is cast into a linear formulation. The proposed optimization procedure consists of specifying first a feasible point belonging to the feasible boundary surface. Next, feasible directions of decreasing values of the objective function are determined. The algorithm proceeds iteratively and terminates when the absolute minimum value of the objective function is reached. The initial point May be selected arbitrarily or it May be optimally determined through a linear method to speed up algorithmic convergence. The algorithm was applied to a number of approximation problems and results were compared to those derived using the revised simplex method. The new algorithm is shown to speed up the problem solution by at least on order of magnitude.  相似文献   

7.
DIRECT is derivative-free global-search algorithm has been found to perform robustly across a wide variety of low-dimensional test problems. The reason DIRECT’s robustness is its lack of algorithmic parameters that need be “tuned” to make the algorithm perform well. In particular, there is no parameter that determines the relative emphasis on global versus local search. Unfortunately, the same algorithmic features that enable DIRECT to perform so robustly have a negative side effect. In particular, DIRECT is usually quick to get close to the global minimum, but very slow to refine the solution to high accuracy. This is what we call DIRECT’s “eventually inefficient behavior.” In this paper, we outline two root causes for this undesirable behavior and propose modifications to eliminate it. The paper builds upon our previously published “MrDIRECT” algorithm, which we can now show only addressed the first root cause of the “eventually inefficient behavior.” The key contribution of the current paper is a further enhancement that allows MrDIRECT to address the second root cause as well. To demonstrate the effectiveness of the enhanced MrDIRECT, we have identified a set of test functions that highlight different situations in which DIRECT has convergence issues. Extensive numerical work with this test suite demonstrates that the enhanced version of MrDIRECT does indeed improve the convergence rate of DIRECT.  相似文献   

8.
This paper proposes a conic approximation algorithm for solving quadratic optimization problems with linear complementarity constraints.We provide a conic reformulation and its dual for the original problem such that these three problems share the same optimal objective value. Moreover, we show that the conic reformulation problem is attainable when the original problem has a nonempty and bounded feasible domain. Since the conic reformulation is in general a hard problem, some conic relaxations are further considered. We offer a condition under which both the semidefinite relaxation and its dual problem become strictly feasible for finding a lower bound in polynomial time. For more general cases, by adaptively refining the outer approximation of the feasible set, we propose a conic approximation algorithm to identify an optimal solution or an \(\epsilon \)-optimal solution of the original problem. A convergence proof is given under simple assumptions. Some computational results are included to illustrate the effectiveness of the proposed algorithm.  相似文献   

9.
We introduce a new and very simple algorithm for a class of smooth convex constrained minimization problems which is an iterative scheme related to sequential quadratically constrained quadratic programming methods, called sequential simple quadratic method (SSQM). The computational simplicity of SSQM, which uses first-order information, makes it suitable for large scale problems. Theoretical results under standard assumptions are given proving that the whole sequence built by the algorithm converges to a solution and becomes feasible after a finite number of iterations. When in addition the objective function is strongly convex then asymptotic linear rate of convergence is established.  相似文献   

10.
The DIRECT (DIviding RECTangles) algorithm of Jones, Perttunen, and Stuckman (Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 157–181, 1993), a variant of Lipschitzian methods for bound constrained global optimization, has proved effective even in higher dimensions. However, the performance of a DIRECT implementation in real applications depends on the characteristics of the objective function, the problem dimension, and the desired solution accuracy. Implementations with static data structures often fail in practice, since it is difficult to predict memory resource requirements in advance. This is especially critical in multidisciplinary engineering design applications, where the DIRECT optimization is just one small component of a much larger computation, and any component failure aborts the entire design process. To make the DIRECT global optimization algorithm efficient and robust on large-scale, multidisciplinary engineering problems, a set of dynamic data structures is proposed here to balance the memory requirements with execution time, while simultaneously adapting to arbitrary problem size. The focus of this paper is on design issues of the dynamic data structures, and related memory management strategies. Numerical computing techniques and modifications of Jones' original DIRECT algorithm in terms of stopping rules and box selection rules are also explored. Performance studies are done for synthetic test problems with multiple local optima. Results for application to a site-specific system simulator for wireless communications systems (S 4 W) are also presented to demonstrate the effectiveness of the proposed dynamic data structures for an implementation of DIRECT.  相似文献   

11.
高岳林  张博 《计算数学》2020,42(2):207-222
本文旨在针对线性比式和规划这一NP-Hard非线性规划问题提出新的全局优化算法.首先,通过引入p个辅助变量把原问题等价的转化为一个非线性规划问题,这个非线性规划问题的目标函数是乘积和的形式并给原问题增加了p个新的非线性约束,再通过构造凸凹包络的技巧对等价问题的目标函数和约束条件进行相应的线性放缩,构成等价问题的一个下界线性松弛规划问题,从而提出了一个求解原问题的分支定界算法,并证明了算法的收敛性.最后,通过数值结果比较表明所提出的算法是可行有效的.  相似文献   

12.
针对机器学习中广泛存在的一类问题:结构化随机优化问题(其中“结构化”是指问题的可行域具有块状结构,且目标函数的非光滑正则化部分在变量块之间是可分离的),我们研究了小批量随机块坐标下降算法(mSBD)。按照求解非复合问题和复合问题分别给出了基本的mSBD和它的变体,对于非复合问题,分析了算法在没有一致有界梯度方差假设情况下的收敛性质。而对于复合问题,在不需要通常的Lipschitz梯度连续性假设条件下得到了算法的收敛性。最后通过数值实验验证了mSBD的有效性。  相似文献   

13.
In this paper, an algorithm of barrier objective penalty function for inequality constrained optimization is studied and a conception–the stability of barrier objective penalty function is presented. It is proved that an approximate optimal solution may be obtained by solving a barrier objective penalty function for inequality constrained optimization problem when the barrier objective penalty function is stable. Under some conditions, the stability of barrier objective penalty function is proved for convex programming. Specially, the logarithmic barrier function of convex programming is stable. Based on the barrier objective penalty function, an algorithm is developed for finding an approximate optimal solution to an inequality constrained optimization problem and its convergence is also proved under some conditions. Finally, numerical experiments show that the barrier objective penalty function algorithm has better convergence than the classical barrier function algorithm.  相似文献   

14.
1引言随机规划中的概率约束问题在工程和管理中有广泛的应用.因为问题中包含非线性的概率约束,它们的求解非常困难.如果目标函数是线性的,问题的求解就比较容易.给出了一个求解随机线性规划概率约束问题的综述.原-对偶算法和切平面算法是比较有效的.在本文中,我们讨论随机凸规划概率约束问题:  相似文献   

15.
In the paper, a global optimization problem is considered where the objective function f (x) is univariate, black-box, and its first derivative f ′(x) satisfies the Lipschitz condition with an unknown Lipschitz constant K. In the literature, there exist methods solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants. Algorithms working with a number of Lipschitz constants for f ′(x) chosen from a set of possible values are not known in spite of the fact that a method working in this way with Lipschitz objective functions, DIRECT, has been proposed in 1993. A new geometric method evolving its ideas to the case of the objective function having a Lipschitz derivative is introduced and studied in this paper. Numerical experiments executed on a number of test functions show that the usage of derivatives allows one to obtain, as it is expected, an acceleration in comparison with the DIRECT algorithm. This research was supported by the RFBR grant 07-01-00467-a and the grant 4694.2008.9 for supporting the leading research groups awarded by the President of the Russian Federation.  相似文献   

16.
《Optimization》2012,61(1-2):93-120
In a continuous approach we propose an efficient method for globally solving linearly constrained quadratic zero-one programming considered as a d.c. (difference of onvex functions) program. A combination of the d.c. optimization algorithm (DCA) which has a finite convergence, and the branch-and-bound scheme was studied. We use rectangular bisection in the branching procedure while the bounding one proceeded by applying d.c.algorithms from a current best feasible point (for the upper bound) and by minimizing a well tightened convex underestimation of the objective function on the current subdivided domain (for the lower bound). DCA generates a sequence of points in the vertex set of a new polytope containing the feasible domain of the problem being considered. Moreover if an iterate is integral then all following iterates are integral too.Our combined algorithm converges so quite often to an integer approximate solution.Finally, we present computational results of several test problems with up to 1800

variables which prove the efficiency of our method, in particular, for linear zero-one programming  相似文献   

17.
We consider an inverse quadratic programming (QP) problem in which the parameters in both the objective function and the constraint set of a given QP problem need to be adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a linear complementarity constrained minimization problem with a positive semidefinite cone constraint. With the help of duality theory, we reformulate this problem as a linear complementarity constrained semismoothly differentiable (SC1) optimization problem with fewer variables than the original one. We propose a perturbation approach to solve the reformulated problem and demonstrate its global convergence. An inexact Newton method is constructed to solve the perturbed problem and its global convergence and local quadratic convergence rate are shown. As the objective function of the problem is a SC1 function involving the projection operator onto the cone of positively semi-definite symmetric matrices, the analysis requires an implicit function theorem for semismooth functions as well as properties of the projection operator in the symmetric-matrix space. Since an approximate proximal point is required in the inexact Newton method, we also give a Newton method to obtain it. Finally we report our numerical results showing that the proposed approach is quite effective.  相似文献   

18.
Inverse multi-objective combinatorial optimization consists of finding a minimal adjustment of the objective functions coefficients such that a given set of feasible solutions becomes efficient. An algorithm is proposed for rendering a given feasible solution into an efficient one. This is a simplified version of the inverse problem when the cardinality of the set is equal to one. The adjustment is measured by the Chebyshev distance. It is shown how to build an optimal adjustment in linear time based on this distance, and why it is right to perform a binary search for determining the optimal distance. These results led us to develop an approach based on the resolution of mixed-integer linear programs. A second approach based on a branch-and-bound is proposed to handle any distance function that can be linearized. Finally, the initial inverse problem is solved by a cutting plane algorithm.  相似文献   

19.
The problem of approximating the global minimum of a function of two variables is considered. A method is proposed rooted in the statistical approach to global optimization. The proposed algorithm partitions the feasible region using a Delaunay triangulation. Only the objective function values are required by the optimization algorithm. The asymptotic convergence rate is analyzed for a class of smooth functions. Numerical examples are provided.  相似文献   

20.
We explore data-driven methods for gaining insight into the dynamics of a two-population genetic algorithm (GA), which has been effective in tests on constrained optimization problems. We track and compare one population of feasible solutions and another population of infeasible solutions. Feasible solutions are selected and bred to improve their objective function values. Infeasible solutions are selected and bred to reduce their constraint violations. Interbreeding between populations is completely indirect, that is, only through their offspring that happen to migrate to the other population. We introduce an empirical measure of distance, and apply it between individuals and between population centroids to monitor the progress of evolution. We find that the centroids of the two populations approach each other and stabilize. This is a valuable characterization of convergence. We find the infeasible population influences, and sometimes dominates, the genetic material of the optimum solution. Since the infeasible population is not evaluated by the objective function, it is free to explore boundary regions, where the optimum is likely to be found. Roughly speaking, the No Free Lunch theorems for optimization show that all blackbox algorithms (such as Genetic Algorithms) have the same average performance over the set of all problems. As such, our algorithm would, on average, be no better than random search or any other blackbox search method. However, we provide two general theorems that give conditions that render null the No Free Lunch results for the constrained optimization problem class we study. The approach taken here thereby escapes the No Free Lunch implications, per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号