首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We look at L -error estimates for convex quadratic optimal control problems governed by nonlinear elliptic partial differential equations. In so doing, use is made of mixed finite element methods. The state and costate are approximated by the lowest order Raviart-Thomas mixed finite element spaces, and the control, by piecewise constant functions. L -error estimates of optimal order are derived for a mixed finite element approximation of a semilinear elliptic optimal control problem. Finally, numerical tests are presented which confirm our theoretical results.  相似文献   

2.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

3.
In this article, we investigate the L(L2) ‐error estimates of the semidiscrete expanded mixed finite element methods for quadratic optimal control problems governed by hyperbolic integrodifferential equations. The state and the costate are discretized by the order k Raviart‐Thomas mixed finite element spaces, and the control is approximated by piecewise polynomials of order k(k ≥ 0). We derive error estimates for both the state and the control approximation. Numerical experiments are presented to test the theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

4.
Explicita priorierror bounds for the approximation by theH10-projection into piecewise polynomial spaces are given. In particular, for the quadratic approximation, the optimal constant is derived, and a nearly optimal value for the cubic is obtained. These constants play an important role in the numerical verification method of finite element solutions for nonlinear elliptic equations.  相似文献   

5.
In this paper, we present and analyze a finite volume method based on the Crouzeix–Raviart element for the coupled fracture model, where the fluid flow is governed by Darcy's law in the one‐dimensional fracture and two‐dimensional surrounding matrix. In the numerical scheme, the pressure in the matrix and fracture is respectively approximated by the Crouzeix–Raviart elements and piecewise constant functions, and then the velocity is calculated by piecewise constant functions element by element. The existence and uniqueness of the numerical solution are discussed, and optimal order error estimates for both the pressure p and the velocity u are proved on general triangulations. We finally carry out numerical experiments, and results confirm our theoretical analysis.  相似文献   

6.
In this paper, a priori error estimates are derived for the mixed finite element discretization of optimal control problems governed by fourth order elliptic partial differential equations. The state and co-state are discretized by Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. The error estimates derived for the state variable as well as those for the control variable seem to be new. We illustrate with a numerical example to confirm our theoretical results.  相似文献   

7.
We consider the a posteriori error estimates for finite element approximations of the Stokes–Darcy system. The finite element spaces adopted are the Hood–Taylor element for the velocity and the pressure in fluid region and conforming piecewise quadratic element for the pressure in porous media region. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L(J; L2Ω)-norm and L2(J; L2Ω)-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.  相似文献   

9.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

10.
解Poisson方程的基于应力佳点的双二次元有限体积法   总被引:2,自引:0,他引:2  
本文提出了求解Poisson方程的一种新的双二次元有限体积法.新方法与通常的双二次元有限体积法作对偶剖分的方式不同,其主要特点是取应力佳点(Gauss点)作为对偶单元的节点,试探函数空间取双二次有限元空间,检验函数空间取相应于对偶剖分的分片常数函数空间.证明了新方法具有最优的H~1模和L~2模误差估计,讨论了在应力佳点数值梯度的超收敛性估计,并通过数值实验验证了理论分析的结果.  相似文献   

11.
In this article, we shall give a brief review on the fully discrete mixed finite element method for general optimal control problems governed by parabolic equations. The state and the co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise constant elements. Furthermore, we derive a posteriori error estimates for the finite element approximation solutions of optimal control problems. Some numerical examples are given to demonstrate our theoretical results.  相似文献   

12.
The incompressible miscible displacement problem in porous media is modeled by a coupled system of two nonlinear partial differential equations, the pressure‐velocity equation and the concentration equation. In this article, we present a mixed finite volume element method for the approximation of pressure‐velocity equation and a discontinuous Galerkin finite volume element method for the concentration equation. A priori error estimates in L(L2) are derived for velocity, pressure, and concentration. Numerical results are presented to substantiate the validity of the theoretical results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

13.
In this paper, we investigate the L ??(L 2)-error estimates and superconvergence of the semidiscrete mixed finite elementmethods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k ?? 0). We derive error estimates for approximation of both state and control. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problems.  相似文献   

14.
It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of nth order accuracy in the energy norm called P n mod elements. For n ≤ 3 we show that the stability condition holds if the velocity space is constructed using the P n mod elements and the pressure space consists of continuous piecewise polynomial functions of degree n. This research has been supported by the Grant Agency of the Czech Republic under the grant No. 201/05/0005 and by the grant MSM 0021620839.  相似文献   

15.
The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart‐Thomas discretization which is related to the Crouzeix‐Raviart nonconforming finite element scheme in the lowest‐order case. The effective and guaranteed a posteriori error control for this nonconforming velocity‐oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf‐sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016  相似文献   

16.
The superconvergence for a nonconforming mixed finite element approximation of the Navier–Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q1 (CNRQ1) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H1‐norm and the pressure in L2‐norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646–660, 2016  相似文献   

17.
This paper is mainly devoted to a comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier–Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, we recast the Navier–Stokes problem into a first-order quasilinear velocity–vorticity–pressure system. Two Picard-type iterative least-squares finite element schemes are proposed to approximate the solution to the nonlinear first-order problem. In each iteration, we adopt the usual L 2 least-squares scheme or a weighted L 2 least-squares scheme to solve the corresponding Oseen problem and provide error estimates. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that the iterative L 2 least-squares scheme is somewhat suitable for low Reynolds number flow problems, whereas for flows with relatively higher Reynolds numbers the iterative weighted L 2 least-squares scheme seems to be better than the iterative L 2 least-squares scheme. Numerical simulations of the two-dimensional driven cavity flow are presented to demonstrate the effectiveness of the iterative least-squares finite element approach.  相似文献   

18.
This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxiliary finite element spaces, the error estimates for the velocity in the L2-norm and energy norm, as well as for the pressure in the L2-norm are derived.  相似文献   

19.
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

20.
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号