首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error which leads to R-linear convergence. This result is shown to hold up to a consistency error due to the extension of the discrete multipliers (point functionals) to H^-1 and a possible mismatch between the continuous and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type error estimator consisting of element and edge residuals. The a posteriori error analysis reveals that the significant difference to the unconstrained case lies in the fact that these residuals only have to be taken into account within the discrete noncoincidence set. The proof of the error reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.  相似文献   

2.
The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works .  相似文献   

3.
王泽文  张文 《计算数学》2011,33(1):87-102
本文研究由单个入射声波或电磁波及其远场数据反演多个柔性散射体边界的逆散射问题.通过建立边界到边界总场的非线性算子及其n6chet导数,本文首先给出了基于单层位势的组合Newton法.将组合Newton法转化为泛响优化问题,从而获得了该方法重建单个散射体的收敛性分析.然后,基于遗传算法和正则化参数选取的模型函数方法,给出...  相似文献   

4.
This paper addresses the inverse obstacle scattering problem. In the recent years several non-iterative methods have been proposed to reconstruct obstacles (penetrable or impenetrable) from near or far field measurements. In the chronological order, we cite among others the linear sampling method, the factorization method, the probe method and the singular sources method. These methods use differently the measurements to detect the unknown obstacle and they require the use of many incident fields (i.e. the full or a part of the far field map). More recently, two other approaches have been added. They are the no-response test and the range test. Both of them use few incident fields to detect some informations about the scatterer. All the mentioned methods are based on building functions depending on some parameter. These functions share the property that their behaviors with respect to the parameter change drastically. The surface of the obstacle is located at most in the interface where these functions become large. The goal of this work is to investigate the relation between some of the non-iterative reconstruction schemes regarding the convergence issue. A given method is said to be convergent if it reconstructs a part or the entire obstacle by using few or many incident fields respectively. For simplicity we consider the obstacle reconstruction problem from far field data for the Helmholtz equation. Gen Nakamura is partially supported by Grant-in-Aid for Scientific research (B)(2)(N.14340038) of Japan Society for Promotion of Science. Mourad Sini is supported by Japan Society for Promotion of Science.  相似文献   

5.
We consider inverse obstacle and transmission scattering problems where the source of the incident waves is located on a smooth closed surface that is a boundary of a domain located outside of the obstacle/inhomogeneity of the media. The domain can be arbitrarily small but fixed.The scattered waves are measured on the same surface. An effective procedure is suggested for recovery of interior eigenvalues by these data.  相似文献   

6.
We prove local uniqueness for the inverse problem in obstacle scattering at a fixed energy and fixed incident angle.

  相似文献   


7.
This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium. The well-posedness of the direct problem is first established by using the integral equation method. We then proceed to establish two tools that play important roles for the inverse problem: one is a mixed reciprocity relation and the other is a priori estimates of the solution on some part of the interfaces between the layered media. For the inverse problem, we prove in this paper that both the penetrable interfaces and the possible inside inhomogeneity can be uniquely determined from a knowledge of the far field pattern for incident plane waves.  相似文献   

8.
This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium. The well-posedness of the direct problem is first established by using the integral equation method. We then proceed to establish two tools that play important roles for the inverse problem: one is a mixed reciprocity relation and the other is a priori estimates of the solution on some part of the interfaces between the layered media. For the inverse problem, we prove in this paper that both the penetrable interfaces and the possible inside inhomogeneity can be uniquely determined from a knowledge of the far field pattern for incident plane waves.  相似文献   

9.
The inverse problem we consider in this paper is to determine the shape of an obstacle from the knowledge of the far field pattern for scattering of time-harmonic plane waves. In the case of scattering from a sound-soft obstacle, we will interpret Huygens’ principle as a system of two integral equations, named data and field equation, for the unknown boundary of the scatterer and the induced surface flux, i.e., the unknown normal derivative of the total field on the boundary. Reflecting the ill-posedness of the inverse obstacle scattering problem these integral equations are ill-posed. They are linear with respect to the unknown flux and nonlinear with respect to the unknown boundary and offer, in principle, three immediate possibilities for their iterative solution via linearization and regularization. In addition to presenting new results on injectivity and dense range for the linearized operators, the main purpose of this paper is to establish and illuminate relations between these three solution methods based on Huygens’ principle in inverse obstacle scattering. Furthermore, we will exhibit connections and differences to the traditional regularized Newton type iterations as applied to the boundary to far field map, including alternatives for the implementation of these Newton iterations.  相似文献   

10.
The time-harmonic electromagnetic plane waves incident on a perfectly conducting obstacle in a homogeneous chiral environment are considered.A two-dimensional direct scat- tering model is established and the existence and uniqueness of solutions to the problem are discussed by an integral equation approach.The inverse scattering problem to find the shape of scatterer with the given far-field data is formulated.Result on the uniqueness of the inverse problem is proved.  相似文献   

11.
This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equation and Riesz fractional diffusion equation. The second order finite difference scheme is used to discretize the space fractional derivative and the Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically verify that the presented numerical methods are unconditionally stable and second order convergent in both space and time directions. In particular, for the Riesz fractional dif- fusion equation, the idea of reducing the splitting error is used to further improve the algorithm, and the unconditional stability and convergency are also strictly proved and numerically verified for the improved scheme.  相似文献   

12.
We consider an inverse scattering problem in a 3D homogeneous shallow ocean. Specifically, we describe a simple and efficient inverse method which can compute an approximation of the vertical projection of an immersed obstacle. This reconstruction is obtained from the far-field patterns generated by illuminating the obstacle with a single incident wave at a given fixed frequency. The technique is based on an implementation of the theory of the convex scattering support [S. Kusiak, J. Sylvester, The scattering support, Commun. Pure Appl. Math. (2003) 1525–1548]. A few examples are presented to show the feasibility of the method.  相似文献   

13.
The characterization problem of the existence of an unknown obstacle behind a known obstacle is considered by using a singe observed wave at a place where the wave is generated. The unknown obstacle is invisible from the place by using a visible ray. A mathematical formulation of the problem using the classical wave equation is given. The main result consists of two parts: (a) one can make a decision whether the unknown obstacle exists or not behind a known impenetrable obstacle by using a single wave over a finite time interval under some a‐priori information on the position of the unknown obstacle; (b) one can obtain a lower bound on the Euclidean distance of the unknown obstacle to the center point of the support of the initial data of the wave. The proof is based on the idea of the time domain enclosure method and employs some previous results on the Gaussian lower/upper estimates for the heat kernels and domination of semigroups.  相似文献   

14.
Nonnegative matrices A whose Moore-Penrose generalized inverse A+ is nonnegative and has any one of the three equivalent properties (i) AA+ = A+A (ii) A+ = A, the group inverse, (iii) A+ = p(A), some polynomial in A with scalar coefficients, are characterized. This characterization generalizes known results on nonnegative matrices Awhose Moore-Penrose generalized inverse is equal to some power of A.  相似文献   

15.
The scattering of time-harmonic electromagnetic plane waves by an impenetrable obstacle in a piecewise homogeneous medium is considered. The well-posedness of the direct problem is proved by the variational method. Under the condition that the wave numbers in the innermost and outermost homogeneous layers coincide, we then establish a uniqueness result for the inverse problem, that is, the unique determination of the obstacle and its boundary condition from a knowledge of the electric far field pattern for incident plane waves. The proof is based on a generalization of the mixed reciprocity relation.  相似文献   

16.
In this paper, various original properties of the Bessel and spherical Bessel functions are presented, based on which we prove a novel uniqueness result of an inverse acoustic obstacle scattering problem, that is, a sound-hard ball with a known center can be uniquely determined by the modulus of a single far-field datum corresponding to a single incident plane wave.  相似文献   

17.
Under a generalized Sommerfeld radiation condition, we proved the uniqueness and existence of the direct obstacle scattering problem of time-harmonic acoustic waves in a stratified medium [8]. In this paper, we study the asymptotic behaviour of the scattered waves and prove three reciprocity relations among the free-wave far-field patterns and the guided-wave far-field pattern vectors corresponding to incident distorted plane waves and normal mode waves. Then we prove conditions under which a set of far-field patterns is complete in a Hilbert space based on the reciprocity relation. These properties are important in investigating the inverse obstacle scattering problems.  相似文献   

18.
A Method for Solving the Inverse Problem in Soft Acoustic Scattering   总被引:2,自引:0,他引:2  
The inverse problem considered is to determine the shape ofan acoustically soft obstacle in R3 from a knowledge of thetime-harmonic incident plane wave and the far-field patternof the scattered wave. To solve this inverse Dirichlet problemin acoustic scattering without requiring the solution of integralequations, a parametric representation is introduced in whichthe parameters are determined by a method of optimization. Directscattering can also be handled by this technique. Comparisonsreveal that results are obtained more easily than, and justas accurately as, in other methods.  相似文献   

19.
The inverse problem of determining 2D spatial part of integral member kernel in integro‐differential wave equation is considered. It is supposed that the unknown function is a trigonometric polynomial with respect to the spatial variable y with coefficients continuous with respect to the variable x. Herein, the direct problem is represented by the initial‐boundary value problem for the half‐space x>0 with the zero initial Cauchy data and Neumann boundary condition as Dirac delta function concentrated on the boundary of the domain . Local existence and uniqueness theorem for the solution to the inverse problem is obtained.  相似文献   

20.
一类阻尼边界条件下的逆散射问题   总被引:3,自引:0,他引:3  
刘继军 《计算数学》2001,23(1):111-120
1.引言 考虑声波在均匀非吸收介质中的传播,该声波被一个无限长的柱体所散射.在声波线性化理论中,众所周知,时间调和声波的振幅u(x)满足 Helmholtz方程其中波数k=>0时间调和声波的散射可以用方程(1.1)的适当的边界条件(例如Dirchlet条件或Neumann条件)来描述.特别,u|D=0对应于软边界(sound-soft)散射,而D= 0则是所谓的硬边界(sound-hard)散射·这里 γ表示边界 D的外法向. 除了上述两类条件外,还有一类更能描述现实物理现象的阻尼边界条件,即物理上,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号