首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
大量研究表明,图的主特征值的数量与图的结构有着密切关系.通过恰有两个主特征值的图的特征定义了2-邻域k-剖分图,研究了恰有两个主特征值的图与2-邻域k-剖分图之间的关系;同时给出一个2-邻域k-剖分图在k=2,3时为等部剖分的条件.  相似文献   

3.
设λ是图G的一个特征值,如果存在属于λ的一个特征向量X=(x_1,x_2,…,x_n)~T,使得(?)x_i≠0,则λ称为图G的主特征值.将恰有两个主特征值的一个充要条件做了进一步推广,并在此基础上给出恰有两个主特征值的图的一些性质以及恰有两个主特征值的图的一些运算结果.  相似文献   

4.
An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero, and it is well known that a graph has exactly one main eigenvalue if and only if it is regular. In this work, all connected bicyclic graphs with exactly two main eigenvalues are determined.  相似文献   

5.
In this paper we determine all finite connected graphs whose spectrum contains exactly two negative eigenvalues. The main theorem says that a graph has exactly two negative eigenvalues if and only if its “canonical graph” (defined below) is one of nine particular graphs on 3, 4, 5 and 6 vertices.  相似文献   

6.
All connected bipartite graphs with exactly two Laplacian eigenvalues greater than two are determined. Besides, all connected bipartite graphs with exactly one Laplacian eigenvalue greater than three are determined.  相似文献   

7.
All connected bipartite graphs with exactly two Laplacian eigenvalues greater than two are determined. Besides, all connected bipartite graphs with exactly one Laplacian eigenvalue greater than three are determined.  相似文献   

8.
A graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. An eigenvalue of a graph is called main eigenvalue if it has an eigenvector such that the sum of whose entries is not equal to zero. In this paper, we show that there are exactly 25 connected integral graphs with exactly two main eigenvalues and index 3.  相似文献   

9.
10.
The energy of a graph is the sum of the absolute values of the eigenvalues of the graph. In a paper [G. Caporossi, D. Cvetkovi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996] Caporossi et al. conjectured that among all connected graphs G with n≥6 vertices and n−1≤m≤2(n−2) edges, the graphs with minimum energy are the star Sn with mn+1 additional edges all connected to the same vertices for mn+⌊(n−7)/2⌋, and the bipartite graph with two vertices on one side, one of which is connected to all vertices on the other side, otherwise. The conjecture is proved to be true for m=n−1,2(n−2) in the same paper by Caporossi et al. themselves, and for m=n by Hou in [Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163-168]. In this paper, we give a complete solution for the second part of the conjecture on bipartite graphs. Moreover, we determine the graph with the second-minimal energy in all connected bipartite graphs with n vertices and edges.  相似文献   

11.
A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay(G, S). In this paper, two sufficient conditions for non-normal Cayley graphs are given and by using the conditions, five infinite families of connected non-normal Cayley graphs are constructed. As an application, all connected non-normal Cayley graphs of valency 5 on A5 are determined, which generalizes a result about the normality of Cayley graphs of valency 3 or 4 on A5 determined by Xu and Xu. Further, we classify all non-CI Cayley graphs of valency 5 on A5, while Xu et al. have proved that As is a 4-CI group.  相似文献   

12.
《Discrete Mathematics》2023,346(6):113373
The anti-adjacency matrix of a graph is constructed from the distance matrix of a graph by keeping each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping in each row and each column only the distances equal to 1. The (anti-)adjacency eigenvalues of a graph are those of its (anti-)adjacency matrix. Employing a novel technique introduced by Haemers (2019) [9], we characterize all connected graphs with exactly one positive anti-adjacency eigenvalue, which is an analog of Smith's classical result that a connected graph has exactly one positive adjacency eigenvalue iff it is a complete multipartite graph. On this basis, we identify the connected graphs with all but at most two anti-adjacency eigenvalues equal to ?2 and 0. Moreover, for the anti-adjacency matrix we determine the HL-index of graphs with exactly one positive anti-adjacency eigenvalue, where the HL-index measures how large in absolute value may be the median eigenvalues of a graph. We finally propose some problems for further study.  相似文献   

13.
一个图的特征值通常指的是它的邻接矩阵的特征值,在图的所有特征值中,重数为1的特征值即所谓的单特征值具有特殊的重要性.确定一个图的单特征值是一个比较困难的问题,主要是没有一个通用的方法.1969年,Petersdorf和Sachs给出了点传递图单特征值的取值范围,但是对于具体的点传递图还需要根据图本身的特性来确定它的单特征值.给出一类正则二部图,它们是二面体群的凯莱图,这类图的单特征值中除了它的正、负度数之外还有0或者±1,而它们恰好是Petersdorf和Sachs所给出的单特征值范围内的中间取值.  相似文献   

14.
We study the quasi-strongly regular graphs, which are a combinatorial generalization of the strongly regular and the distance regular graphs. Our main focus is on quasi-strongly regular graphs of grade 2. We prove a “spectral gap”-type result for them which generalizes Seidel's well-known formula for the eigenvalues of a strongly regular graph. We also obtain a number of necessary conditions for the feasibility of parameter sets and some structural results. We propose the heuristic principle that the quasi-strongly regular graphs can be viewed as a “lower-order approximation” to the distance regular graphs. This idea is illustrated by extending a known result from the distance-regular case to the quasi-strongly regular case. Along these lines, we propose a number of conjectures and open problems. Finally, we list the all the proper connected quasi-strongly graphs of grade 2 with up to 12 vertices.  相似文献   

15.
《Discrete Mathematics》2019,342(12):111615
In this paper, all simple connected signed graphs with maximum degree at most 4 and with just two distinct adjacency eigenvalues are completely characterized, there exists an infinite family of 4-regular signed graphs with just two distinct adjacency eigenvalues.  相似文献   

16.
GRAPHS CHARACTERIZED BY LAPLACIAN EIGENVALUES   总被引:1,自引:0,他引:1       下载免费PDF全文
§1. Introduction Let G = (V,E) be a simple graph. The Laplacian matrix of G is L(G) = D(G)?A(G),where D(G) = diag (du,u ∈V (G)) (du is the degree of a vertex u) and A(G) are the degreediagonal and the adjacency matrices of G. The eigenvalues of L(G) are called the Laplacianeigenvalues and denoted by λ1(G) ≥λ2(G) ≥···≥λn(G) = 0or for short λ1 ≥λ2 ≥···≥λn = 0.The Laplacian matrix of a simple gra…  相似文献   

17.
In this paper, we investigate connected nonregular graphs with four distinct Laplacian eigenvalues. We characterize all such graphs which are bipartite or have exactly one multiple Laplacian eigenvalue. Other examples of interest are also presented.  相似文献   

18.
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs.  相似文献   

19.
Recently Chen et al. [Tree domination in graphs, Ars Combin. 73 (2004) 193-203] asked for characterizations of the class of graphs and the class of regular graphs that have an induced dominating tree, i.e. for which there exists a dominating set that induces a tree.We give a somewhat negative answer to their question by proving that the corresponding decision problems are NP-complete. Furthermore, we prove essentially best-possible lower bounds on the maximum order of induced trees in connected cacti of maximum degree 3 and connected cubic graphs.Finally, we give a forbidden induced subgraph condition for the existence of induced dominating trees.  相似文献   

20.
A Hamiltonian path of a graph is a simple path which visits each vertex of the graph exactly once. The Hamiltonian path problem is to determine whether a graph contains a Hamiltonian path. A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. In this paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs. Supergrid graphs were first introduced by us and include grid graphs and triangular grid graphs as subgraphs. The Hamiltonian path problem for grid graphs and triangular grid graphs was known to be NP-complete. Recently, we have proved that the Hamiltonian path problem for supergrid graphs is also NP-complete. The Hamiltonian paths on supergrid graphs can be applied to compute the stitching traces of computer sewing machines. Rectangular supergrid graphs form a popular subclass of supergrid graphs, and they have strong structure. In this paper, we provide a constructive proof to show that rectangular supergrid graphs are Hamiltonian connected except one trivial forbidden condition. Based on the constructive proof, we present a linear-time algorithm to construct a longest path between any two given vertices in a rectangular supergrid graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号