首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We propose a modified sequential quadratic programming method for solving mixed-integer nonlinear programming problems. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer value, successive quadratic approximations are applied. The algorithm is stabilized by a trust region method with Yuan’s second order corrections. It is not assumed that the mixed-integer program is relaxable or, in other words, function values are evaluated only at integer points. The Hessian of the Lagrangian function is approximated by a quasi-Newton update formula subject to the continuous and integer variables. Numerical results are presented for a set of 80 mixed-integer test problems taken from the literature. The surprising result is that the number of function evaluations, the most important performance criterion in practice, is less than the number of function calls needed for solving the corresponding relaxed problem without integer variables.  相似文献   

2.
The quadratic programming aspects of a full space successive quadratic programming (SQP) method are described. In particular, fill-in, matrix factor and active set updating, numerical stability, and indefiniteness of the Hessian matrix are discussed in conjunction with a sparse modification of Bunch and Parlett factorization of symmetric indefinite (Kuhn-Tucker) matrices of the type often encountered in optimization. A new pivoting strategy, called constrained pivoting, is proposed to reduce fill-in and compared with complete, partial and threshold pivoting. It is shown that constrained pivoting often significantly reduces fill-in and thus the iterative computational burdens associated with the factorization and solution of Kuhn-Tucker conditions within the QP subproblem. A numerical algorithm for updating the lower triangular and diagonal factors is presented and shown to be very fast, usually requiring only about 5% of the cost of refactorization. Two active set strategies are also presented. These include the options of adding inequalities either one or several at a time. In either case, the effects on matrix factor updating is shown to be small. Finally, a simple test is used to maintain iterative descent directions in the quadratic program. Our sparse symmetric indefinite QP algorithm is tested in the context of a family of SQP algorithms that include a full space Newton method with analytical derivatives, a full space BFGS method and a Range and Null space Decomposition (RND) method in which the projected Hessian is calculated from either analytical second derivatives or the BFGS update. Several chemical process optimization problems, with small and large degrees of freedom, are used as test problems. These include minimum work calculations for multistage isothermal compression, minimum area targeting for heat exchanger networks, and distillation optimizations involving some azeotropic and extractive distillations. Numerical results show uniformly that both the proposed QP and SQP algorithms, particularly the full space Newton method, are reliable and efficient. No failures were experienced at either level.  相似文献   

3.
We introduce GOSAC, a global optimization algorithm for problems with computationally expensive black-box constraints and computationally cheap objective functions. The variables may be continuous, integer, or mixed-integer. GOSAC uses a two-phase optimization approach. The first phase aims at finding a feasible point by solving a multi-objective optimization problem in which the constraints are minimized simultaneously. The second phase aims at improving the feasible solution. In both phases, we use cubic radial basis function surrogate models to approximate the computationally expensive constraints. We iteratively select sample points by minimizing the computationally cheap objective function subject to the constraint function approximations. We assess GOSAC’s efficiency on computationally cheap test problems with integer, mixed-integer, and continuous variables and two environmental applications. We compare GOSAC to NOMAD and a genetic algorithm (GA). The results of the numerical experiments show that for a given budget of allowed expensive constraint evaluations, GOSAC finds better feasible solutions more efficiently than NOMAD and GA for most benchmark problems and both applications. GOSAC finds feasible solutions with a higher probability than NOMAD and GOSAC.  相似文献   

4.
For our introduced mixed-integer quadratic stochastic program with fixed recourse matrices, random recourse costs, technology matrix and right-hand sides, we study quantitative stability properties of its optimal value function and optimal solution set when the underlying probability distribution is perturbed with respect to an appropriate probability metric. To this end, we first establish various Lipschitz continuity results about the value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of linear constraints. The obtained results extend earlier results about quantitative stability properties of stochastic integer programming and stability results for mixed-integer parametric quadratic programs.  相似文献   

5.
Combining the ideas of generalized projection and the strongly subfeasible sequential quadratic programming (SQP) method, we present a new strongly subfeasible SQP algorithm for nonlinearly inequality-constrained optimization problems. The algorithm, in which a new unified step-length search of Armijo type is introduced, starting from an arbitrary initial point, produces a feasible point after a finite number of iterations and from then on becomes a feasible descent SQP algorithm. At each iteration, only one quadratic program needs to be solved, and two correctional directions are obtained simply by explicit formulas that contain the same inverse matrix. Furthermore, the global and superlinear convergence results are proved under mild assumptions without strict complementarity conditions. Finally, some preliminary numerical results show that the proposed algorithm is stable and promising.  相似文献   

6.
整数规划是对全部或部分决策变量为整数的最优化问题的模型、算法及应用等的研究, 是运筹学和管理科学中应用最广泛的优化模型之一. 首先简要回顾整数规划的历史和发展进程, 概述线性和非线性整数规划的一些经典方法. 然后着重讨论整数规划若干新进展, 包括0-1二次规划的半定规划~(SDP)~松弛和随机化方法, 带半连续变量和稀疏约束的优化问题的整数规划模型和方法, 以及0-1二次规划的协正锥规划表示和协正锥的层级半定规划~(SDP)~逼近. 最后, 对整数规划未来研究方向进行展望并对一些公开问题进行讨论.  相似文献   

7.
Mixed-integer quadratic programming   总被引:5,自引:0,他引:5  
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a suitable approach for solving such programs. However, the program does not become more tractable if this method is used, since Benders' cuts are quadratic in the integer variables. A new equivalent formulation that renders the program tractable is developed, under which the dual objective function is linear in the integer variables and the dual constraint set is independent of these variables. Benders' cuts that are derived from the new formulation are linear in the integer variables, and the original problem is decomposed into a series of integer linear master problems and standard quadratic subproblems. The new formulation does not introduce new primary variables or new constraints into the computational steps of the decomposition algorithm.The author wishes to thank two anonymous referees for their helpful comments and suggestions for revising the paper.  相似文献   

8.
Our goal is to identify the volatility function in Dupire’s equation from given option prices. Following an optimal control approach in a Lagrangian framework, a globalized sequential quadratic programming (SQP) algorithm combined with a primal-dual active set strategy is proposed. Existence of local optimal solutions and of Lagrange multipliers is shown. Furthermore, a sufficient second-order optimality condition is proved. Finally, some numerical results are presented underlining the good properties of the numerical scheme.  相似文献   

9.
We present a quasi-Newton sequential quadratic programming (SQP) algorithm for nonlinear programs in which the Hessian of the Lagrangian function is block-diagonal. Problems with this characteristic frequently arise in the context of optimal control; for example, when a direct multiple shooting parametrization is used. In this article, we describe an implementation of a filter line-search SQP method that computes search directions using an active-set quadratic programming (QP) solver. To take advantage of the block-diagonal structure of the Hessian matrix, each block is approximated separately by quasi-Newton updates. For nonconvex instances, that arise, for example, in optimum experimental design control problems, these blocks are often found to be indefinite. In that case, the block-BFGS quasi-Newton update can lead to poor convergence. The novel aspect in this work is the use of SR1 updates in place of BFGS approximations whenever possible. The resulting indefinite QPs necessitate an inertia control mechanism within the sparse Schur-complement factorization that is carried out by the active-set QP solver. This permits an adaptive selection of the Hessian approximation that guarantees sufficient progress towards a stationary point of the problem. Numerical results demonstrate that the proposed approach reduces the number of SQP iterations and CPU time required for the solution of a set of optimal control problems.  相似文献   

10.
Concave mixed-integer quadratic programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe an algorithm that finds an \(\epsilon \)-approximate solution to a concave mixed-integer quadratic programming problem. The running time of the proposed algorithm is polynomial in the size of the problem and in \(1/\epsilon \), provided that the number of integer variables and the number of negative eigenvalues of the objective function are fixed. The running time of the proposed algorithm is expected unless \(\mathcal {P}=\mathcal {NP}\).  相似文献   

11.
Penalty functions,Newton's method,and quadratic programming   总被引:1,自引:0,他引:1  
In this paper, the search directions computed by two versions of the sequential quadratic programming (SQP) algorithm are compared with that computed by attempting to minimize a quadratic penalty function by Newton's method, and it is shown that the differences are attributable to ignoring certain terms in the equation for the Newton correction. Since the effect of ignoring these terms may be to make the resultant direction a poor descent direction for the quadratic penalty function, it is argued that the latter is an inappropriate merit function for use with SQP. A method is then suggested by which these terms may be included without losing the benefits gained from the use of the orthogonal transformations derived from the constraints Jacobian.The authors wish to thank A. R. Conn and N. I. M. Gould for spirited discussions which took place when the second author spent some time at Waterloo, Ontario, Canada; they also thank L. C. W. Dixon for the clarifications that he suggested to the penultimate draft of this paper.  相似文献   

12.
The purpose of this paper is to present sufficient conditions for the existence of optimal solutions to integer and mixed-integer programming problems in the absence of upper bounds on the integer variables. It is shown that (in addition to feasibility and boundedness of the objective function) (1) in the pure integer case a sufficient condition is that all of the constraints (other than non-negativity and integrality of the variables) beequalities, and (2) that in the mixed-integer caserationality of the constraint coefficients is sufficient. Some computational implications of these results are also given.  相似文献   

13.
In this paper, the nonlinear minimax problems with inequality constraints are discussed, and a sequential quadratic programming (SQP) algorithm with a generalized monotone line search is presented. At each iteration, a feasible direction of descent is obtained by solving a quadratic programming (QP). To avoid the Maratos effect, a high order correction direction is achieved by solving another QP. As a result, the proposed algorithm has global and superlinear convergence. Especially, the global convergence is obtained under a weak Mangasarian–Fromovitz constraint qualification (MFCQ) instead of the linearly independent constraint qualification (LICQ). At last, its numerical effectiveness is demonstrated with test examples.  相似文献   

14.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

15.
Uncertainty and integer variables often exist together in economics and engineering design problems. The goal of robust optimization problems is to find an optimal solution that has acceptable sensitivity with respect to uncertain factors. Including integer variables with or without uncertainty can lead to formulations that are computationally expensive to solve. Previous approaches for robust optimization problems under interval uncertainty involve nested optimization or are not applicable to mixed-integer problems where the objective or constraint functions are neither quadratic, nor linear. The overall objective in this paper is to present an efficient robust optimization method that does not contain nested optimization and is applicable to mixed-integer problems with quasiconvex constraints (? type) and convex objective funtion. The proposed method is applied to a variety of numerical examples to test its applicability and numerical evidence is provided for convergence in general as well as some theoretical results for problems with linear constraints.  相似文献   

16.
Combining the norm-relaxed sequential quadratic programming (SQP) method and the idea of method of quasi-strongly sub-feasible directions (MQSSFD) with active set identification technique, a new SQP algorithm for solving nonlinear inequality constrained optimization is proposed. Unlike the previous work, at each iteration of the proposed algorithm, the norm-relaxed quadratic programming (QP) subproblem only consists of the constraints corresponding to an active identification set. Moreover, the high-order correction direction (used to avoid the Maratos effect) is yielded by solving a system of linear equations (SLE) which also includes only the constraints and their gradients corresponding to the active identification set, therefore, the scale and the computation cost of the high-order correction directions are further decreased. The arc search in our algorithm can effectively combine the initialization processes with the optimization processes, and the iteration points can get into the feasible set after a finite number of iterations. Furthermore, the arc search conditions are weaker than the previous work, and the computation cost is further reduced. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ). If the strong second-order sufficient conditions are satisfied, then the active constraints are exactly identified by the identification set. Without the strict complementarity, superlinear convergence can be obtained. Finally, some elementary numerical results are reported.  相似文献   

17.
基于乘子交替方向法(ADMM)和序列二次规划(SQP)方法思想, 致力于研究线 性约束两分块非凸优化的新型高效算法. 首先, 以SQP思想为主线, 在其二次规划(QP)子问题的求解中引入ADMM思想, 将QP分解为两个相互独立的小规模QP求解. 其次, 借助增广拉格朗日函数和Armijo线搜索产生原始变量新迭代点. 最后, 以显式解析式更新对偶变量. 因此, 构建了一个新型ADMM-SQP算法. 在较弱条件下, 分析了算法通常意义下的全局收敛性, 并对算法进行了初步的数值试验.  相似文献   

18.
This paper focuses on solving two-stage stochastic mixed integer programs (SMIPs) with general mixed integer decision variables in both stages. We develop a decomposition algorithm in which the first-stage approximation is solved by a branch-and-bound algorithm with its nodes inheriting Benders’ cuts that are valid for their ancestor nodes. In addition, we develop two closely related convexification schemes which use multi-term disjunctive cuts to obtain approximations of the second-stage mixed-integer programs. We prove that the proposed methods are finitely convergent. One of the main advantages of our decomposition scheme is that we use a Benders-based branch-and-cut approach in which linear programming approximations are strengthened sequentially. Moreover as in many decomposition schemes, these subproblems can be solved in parallel. We also illustrate these algorithms using several variants of an SMIP example from the literature, as well as a new set of test problems, which we refer to as Stochastic Server Location and Sizing. Finally, we present our computational experience with previously known examples as well as the new collection of SMIP instances. Our experiments reveal that our algorithm is able to produce provably optimal solutions (within an hour of CPU time) even in instances for which a highly reliable commercial MIP solver is unable to provide an optimal solution within an hour of CPU time.  相似文献   

19.
In this article, unconstrained minimax problems are discussed, and a sequential quadratic programming (SQP) algorithm with a new nonmonotone linesearch is presented. At each iteration, a search direction of descent is obtained by solving a quadratic programming (QP). To circumvent the Maratos effect, a high-order correction direction is achieved by solving another QP and a new nonmonotone linesearch is performed. Under reasonable conditions, the global convergence and the rate of superlinear convergence are established. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.  相似文献   

20.
A new SQP type feasible method for inequality constrained optimization is presented, it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations. The directions of the master algorithm are generated by only one quadratic programming, and its step-size is always one, the directions of the auxiliary algorithm are new “secondorder“ feasible descent. Under suitable assumptions, the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号