首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
主要是将半定规划(Semidefinite Programming,简称SDP)的内点算法推广到二次半定规划(Quadratic Semidefinite Programming,简称QSDP),重点讨论了其中搜索方向的产生方法.首先利用Wolfe对偶理论推导得到了求解二次半定规划的非线性方程组,利用牛顿法求解该方程组,得到了求解QSDP的内点算法的H..K..M搜索方向,接着证明了该搜索方向的存在唯一性,最后给出了搜索方向的具体计算方法.  相似文献   

2.
首先在序拓扑线性空间中定义了集值映射多目标半定规划问题的KuhnTucker鞍点,在广义锥-次类凸条件下,讨论了此集值优化问题的弱有效解和Benson真有效性解与Kuhn-Tucker鞍点之间的关系.  相似文献   

3.
解半定规划的二次摄动方法   总被引:3,自引:0,他引:3  
半定规划在系统论,控制论,组合优化,和特征值优化等领域有着广泛的应用。本文将半定规划摄动成二次半定规划,它的唯一解恰为原问题的解,并且对其偶问题等价于一个线性对称的投影方程,可方便地用投影收缩方法求解,从而获得原半定规划问题的解。文章给出了算法及其收敛性分析,数值试验结果表明摄动方法是解半定规划的一种有效的方法。  相似文献   

4.
张立卫 《运筹学学报》2014,18(1):93-112
讨论非线性半定规划的四个专题, 包括半正定矩阵锥的变分分析、非凸半定规划问题的最优性条件、非凸半定规划问题的扰动分析和非凸半定规划问题的增广Lagrange方法.  相似文献   

5.
讨论非线性半定规划的四个专题,包括半正定矩阵锥的变分分析、非凸半定规划问题的最优性条件、非凸半定规划问题的扰动分析和非凸半定规划问题的增广Lagrange方法.  相似文献   

6.
提出使用凸松弛的方法求解二层规划问题,通过对一般带有二次约束的二次规划问题的半定规划松弛的探讨,研究了使用半定规划(SDP)松弛结合传统的分枝定界法求解带有凸二次下层问题的二层二次规划问题,相比常用的线性松弛方法,半定规划松弛方法可快速缩小分枝节点的上下界间隙,从而比以往的分枝定界法能够更快地获得问题的全局最优解.  相似文献   

7.
水火联合调度问题是电力系统中一类复杂的优化问题。合理安排调度周期内的水火电出力,确定一个最优发电计划,可以带来巨大的经济效益。在实际系统中,汽轮机调汽阀开启时出现的拔丝现象会使机组耗量特性产生阀点效应。忽略阀点效应,在一定程度上降低求解的精度。本文考虑带阀点效应的水火联合调度问题。该问题非凸非光滑,且带有非线性约束,直接使用确定性全局优化方法求解是相当困难的。本文使用高效的半定规划求解此问题。首先用耗量特性函数的初始周期代替其余有限的周期,并对其进行二次拉格朗日插值拟合。再通过引进0-1变量,得到整个耗量特性函数的近似,进而把问题松弛为半定规划模型。最后,采用凸规划应用软件包CVX求解一个仿真算例,得到一个近似全局最优解。  相似文献   

8.
集值映射多目标半定规划的弱有效性   总被引:1,自引:0,他引:1  
将多目标半定规划问题推广到集值映射,在广义锥-次类凸的框架下,利用含矩阵和向量的择一定理研究了问题的标量化,Lagrange函数与无约束化,弱鞍点条件和对偶性.  相似文献   

9.
将多目标半定规划问题推广到集值映射,在广义锥-次类凸条件下,在Benson真有效性意义下研究了问题的标量化,Lagrange函数与无约束化,真鞍点条件和对偶性.  相似文献   

10.
在不变凸的假设下来讨论多目标半定规划的最优性条件、对偶理论以及非凸半定规划的最优性条件.首先给出了非凸半定规划的一个KKT条件成立的充分必要条件, 并利用此定理证明了其最优性必要条件.其次讨论了多目标半定规划的最优性必要条件、充分条件, 并对其建立Wolfe对偶模型, 证明了弱对偶定理和强对偶定理.  相似文献   

11.
任燕  陈伟 《运筹学学报》2010,14(1):66-76
本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合0-1整数规划问题,然后利用Ilog-cplex或Excel软件中的规划求解工具进行求解,从而解决原二次整数规划.  相似文献   

12.
In this paper, a new variable reduction technique is presented for general integer quadratic programming problem (GP), under which some variables of (GP) can be fixed at zero without sacrificing optimality. A sufficient condition and a necessary condition for the identification of dominated terms are provided. By comparing the given data of the problem and the upper bound of the variables, if they meet certain conditions, some variables can be fixed at zero. We report a computational study to demonstrate the efficacy of the proposed technique in solving general integer quadratic programming problems. Furthermore, we discuss separable integer quadratic programming problems in a simpler and clearer form.  相似文献   

13.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

14.
In this paper, we first establish some sufficient and some necessary global optimality conditions for quadratic integer programming problems. Then we present a new local optimization method for quadratic integer programming problems according to its necessary global optimality conditions. A new global optimization method is proposed by combining its sufficient global optimality conditions, local optimization method and an auxiliary function. The numerical examples are also presented to show that the proposed optimization methods for quadratic integer programming problems are very efficient and stable.  相似文献   

15.
In this paper, we present an improved Partial Enumeration Algorithm for Integer Programming Problems by developing a special algorithm, named PE_SPEEDUP (partial enumeration speedup), to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to understand and implement, yet very effective in dealing with many integer programming problems, including knapsack problems, reliability optimization, and spare allocation problems. The algorithm is based on monotonicity properties of the problem functions, and uses function values only; it does not require continuity or differentiability of the problem functions. This allows its use on problems whose functions cannot be expressed in closed algebraic form. The reliability and efficiency of the proposed PE_SPEEDUP algorithm has been demonstrated on some integer optimization problems taken from the literature.  相似文献   

16.
Convex integer quadratic programming involves minimization of a convex quadratic objective function with affine constraints and is a well-known NP-hard problem with a wide range of applications. We proposed a new variable reduction technique for convex integer quadratic programs (IQP). Based on the optimal values to the continuous relaxation of IQP and a feasible solution to IQP, the proposed technique can be applied to fix some decision variables of an IQP simultaneously at zero without sacrificing optimality. Using this technique, computational effort needed to solve IQP can be greatly reduced. Since a general convex bounded IQP (BIQP) can be transformed to a convex IQP, the proposed technique is also applicable for the convex BIQP. We report a computational study to demonstrate the efficacy of the proposed technique in solving quadratic knapsack problems.  相似文献   

17.
Some developments in structure and stability of stochastic programs during the last decade together with interrelations to optimization theory and stochastics are reviewed. With weak convergence of probability measures as a backbone we discuss qualitative and quantitative stability of recourse models that possibly involve integer variables. We sketch stability in chance constrained stochastic programming and provide some applications in statistical estimation. Finally, an outlook is devoted to issues that were not discussed in detail and to some open problems.  相似文献   

18.
This work addresses the development of an efficient solution strategy for obtaining global optima of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by developing novel strategies for constructing linear relaxations of mixed-integer nonlinear programs and prove that these relaxations enjoy quadratic convergence properties. We then use Lagrangian/linear programming duality to develop a unifying theory of domain reduction strategies as a consequence of which we derive many range reduction strategies currently used in nonlinear programming and integer linear programming. This theory leads to new range reduction schemes, including a learning heuristic that improves initial branching decisions by relaying data across siblings in a branch-and-bound tree. Finally, we incorporate these relaxation and reduction strategies in a branch-and-bound algorithm that incorporates branching strategies that guarantee finiteness for certain classes of continuous global optimization problems. In the computational part of the paper, we describe our implementation discussing, wherever appropriate, the use of suitable data structures and associated algorithms. We present computational experience with benchmark separable concave quadratic programs, fractional 0–1 programs, and mixed-integer nonlinear programs from applications in synthesis of chemical processes, engineering design, just-in-time manufacturing, and molecular design.The research was supported in part by ExxonMobil Upstream Research Company, National Science Foundation awards DMII 95-02722, BES 98-73586, ECS 00-98770, and CTS 01-24751, and the Computational Science and Engineering Program of the University of Illinois.  相似文献   

19.
Solving mixed integer nonlinear programs by outer approximation   总被引:1,自引:0,他引:1  
A wide range of optimization problems arising from engineering applications can be formulated as Mixed Integer NonLinear Programming problems (MINLPs). Duran and Grossmann (1986) suggest an outer approximation scheme for solving a class of MINLPs that are linear in the integer variables by a finite sequence of relaxed MILP master programs and NLP subproblems.Their idea is generalized by treating nonlinearities in the integer variables directly, which allows a much wider class of problem to be tackled, including the case of pure INLPs. A new and more simple proof of finite termination is given and a rigorous treatment of infeasible NLP subproblems is presented which includes all the common methods for resolving infeasibility in Phase I.The worst case performance of the outer approximation algorithm is investigated and an example is given for which it visits all integer assignments. This behaviour leads us to include curvature information into the relaxed MILP master problem, giving rise to a new quadratic outer approximation algorithm.An alternative approach is considered to the difficulties caused by infeasibility in outer approximation, in which exact penalty functions are used to solve the NLP subproblems. It is possible to develop the theory in an elegant way for a large class of nonsmooth MINLPs based on the use of convex composite functions and subdifferentials, although an interpretation for thel 1 norm is also given.This work is supported by SERC grant no. SERC GR/F 07972.Corresponding author.  相似文献   

20.
Second-order cone programs are a class of convex optimization problems. We refer to them as deterministic second-order cone programs (DSCOPs) since data defining them are deterministic. In DSOCPs we minimize a linear objective function over the intersection of an affine set and a product of second-order (Lorentz) cones. Stochastic programs have been studied since 1950s as a tool for handling uncertainty in data defining classes of optimization problems such as linear and quadratic programs. Stochastic second-order cone programs (SSOCPs) with recourse is a class of optimization problems that defined to handle uncertainty in data defining DSOCPs. In this paper we describe four application models leading to SSOCPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号