首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the dynamical behavior of a virus dynamics model with CTL immune response is studied. Sufficient conditions for the asymptotical stability of a disease-free equilibrium, an immune-free equilibrium and an endemic equilibrium are obtained. We prove that there exists a threshold value of the infection rate b beyond which the endemic equilibrium bifurcates from the immune-free one. Still for increasing b values, the endemic equilibrium bifurcates towards a periodic solution. We further analyze the orbital stability of the periodic orbits arising from bifurcation by applying Poore’s condition. Numerical simulation with some hypothetical sets of data has been done to support the analytical findings.  相似文献   

2.
In this paper, a SEIR epidemic model with nonlinear incidence rate and time delay is investigated in three cases. The local stability of an endemic equilibrium and a disease-free equilibrium are discussed using stability theory of delay differential equations. The conditions that guarantee the asymptotic stability of corresponding steady-states are investigated. The results show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation when using the time delay as a bifurcation parameter. Applying the normal form theory and center manifold argument, the explicit formulas determining the properties of the bifurcating periodic solution are derived. In addition, the effect of the inhibitory effect on the properties of the bifurcating periodic solutions is studied. Numerical simulations are provided in order to illustrate the theoretical results and to gain further insight into the behaviors of delayed systems.  相似文献   

3.
研究了具有免疫应答和吸收效应的病毒动力学模型的动力学行为.通过构造适当的Lyapunov泛函,使用LaSalle不变性原理,证明了基本再生数、CTL免疫再生数、抗体免疫再生数、CTL免疫竞争再生数和抗体免疫竞争再生数决定了模型的全局性态.若基本再生数小于等于1,病毒在体内清除.若基本再生数大于1,正解在满足条件max{R1,R2}<100时趋于无免疫平衡点,在满足条件R4≤1100时趋于CTL主导平衡点,在满足条件R3≤1200时趋于抗体主导平衡点,在满足条件1303,1403时趋于正平衡点,据此获得了无病平衡点、无免疫平衡点、CTL主导平衡点、抗体主导平衡点和正平衡点全局渐近稳定的充分条件,推广了Dominik(2003)的工作.  相似文献   

4.
讨论了一类带有时滞的SE IS流行病模型,并讨论了阈值、平衡点和稳定性.模型是一个具有确定潜伏期的时滞微分方程模型,在这里我们得到了各类平衡点存在条件的阈值R0;当R0<1时,只有无病平衡点P0,且是全局渐近稳定的;当R0>1时,除无病平衡点外还存在唯一的地方病平衡点Pe,且该平衡点是绝对稳定的.  相似文献   

5.
This article proposes a diffused hepatitis B virus (HBV) model with CTL immune response and nonlinear incidence for the control of viral infections. By means of different Lyapunov functions, the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained. Global stability of the positive equilibrium of the model is also considered. The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.  相似文献   

6.
Epidemic models are very important in today''s analysis of diseases. In this paper, we propose and analyze an epidemic model incorporating quarantine, latent, media coverage and time delay. We analyze the local stability of either the disease-free and endemic equilibrium in terms of the basic reproduction number $\mathcal{R}_{0}$ as a threshold parameter. We prove that if $\mathcal{R}_{0}<1,$ the time delay in media coverage can not affect the stability of the disease-free equilibrium and if $\mathcal{R}_{0}>1$, the model has at least one positive endemic equilibrium, the stability will be affected by the time delay and some conditions for Hopf bifurcation around infected equilibrium to occur are obtained by using the time delay as a bifurcation parameter. We illustrate our results by some numerical simulations such that we show that a proper application of quarantine plays a critical role in the clearance of the disease, and therefore a direct contact between people plays a critical role in the transmission of the disease.  相似文献   

7.
In this paper, an eco-epidemiological predator–prey model with stage structure for the prey and a time delay describing the latent period of the disease is investigated. By analyzing corresponding characteristic equations, the local stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the endemic equilibrium is addressed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using Lyapunov functionals and LaSalle’s invariance principle, sufficient conditions are obtained for the global asymptotic stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the endemic equilibrium of the model.  相似文献   

8.
Analysis of a viral infection model with delayed immune response   总被引:1,自引:0,他引:1  
It is well known that the immune response plays an important role in eliminating or controlling the disease after human body is infected by virus. In this paper, we investigate the dynamical behavior of a viral infection model with retarded immune response. The effect of time delay on stability of the equilibria of the system has been studied and sufficient condition for local asymptotic stability of the infected equilibrium and global asymptotic stability of the infection-free equilibrium and the immune-exhausted equilibrium are given. By numerical simulating,we observe that the stationary solution becomes unstable at some critical immune response time, while the delay time and birth rate of susceptible host cells increase, and we also discover the occurrence of stable periodic solutions and chaotic dynamical behavior. The results can be used to explain the complexity of the immune state of patients.  相似文献   

9.
The limitation of contact between susceptible and infected individuals plays an important role in decreasing the transmission of infectious diseases. Prevention and control strategies contribute to minimizing the transmission rate. In this paper, we propose SIR epidemic model with delayed control strategies, in which delay describes the response and effect time. We study the dynamic properties of the epidemic model from three aspects: steady states, stability and bifurcation. By eliminating the existence of limit cycles, we establish the global stability of the endemic equilibrium, when the delay is ignored. Further, we find that the delayed effect on the infection rate does not affect the stability of the disease-free equilibrium, but it can destabilize the endemic equilibrium and bring Hopf bifurcation. Theoretical results show that the prevention and control strategies can effectively reduce the final number of infected individuals in the population. Numerical results corroborate the theoretical ones.  相似文献   

10.
In this paper, a delay cholera model with constant infectious period is investigated. By analyzing the characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium of the model is established. It is proved that if the basic reproductive number $\mathcal{R}_0>1$, the system is permanent. If $\mathcal{R}_0<1$, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the disease-free equilibrium. If $\mathcal{R}_0>1$, also by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.  相似文献   

11.
基于"比例依赖"理论,研究了一类具有时滞和Watt型功能反应函数的恒化器模型.详细讨论了正平衡点的局部渐近稳定性,证明了系统在特定的时滞参量值下将产生Hopf分支.利用Lyapunov-LaSalle不变性原理,得到了正平衡点全局渐近稳定的充分条件.  相似文献   

12.
In this paper, an SIRS epidemic model with a nonlinear incidence rate and a time delay is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed. By comparison arguments, it is proved that if the basic reproductive number R0<1, the disease-free equilibrium is globally asymptotically stable. If R0>1, by means of an iteration technique, sufficient conditions are derived for the global asymptotic stability of the endemic equilibrium.  相似文献   

13.
研究了一类具有Logistic增长和HollingⅡ类功能反应的免疫模型.以时滞为分支参数,分析了系统正平衡点的稳定性和Hopf分支的存在性;然后利用中心流形定理和规范型方法,给出了分支周期解的分支方向与稳定性的计算公式,利用数值模拟验证了所得结论.  相似文献   

14.
研究了一类具有非线性发生率和时滞的随机SIQR计算机病毒模型.首先证明了该系统具有唯一的全局正解,然后通过构造适当的Lyapunov函数并利用伊藤公式,分析了该模型的解在无病平衡点附近及地方病平衡点附近的渐近行为,最后通过数值模拟对随机系统解的渐近行为做了进一步的分析并给出了结论.  相似文献   

15.
Dynamical behavior of computer virus on Internet   总被引:2,自引:0,他引:2  
In this paper, we presented a computer virus model using an SIRS model and the threshold value R0 determining whether the disease dies out is obtained. If R0 is less than one, the disease-free equilibrium is globally asymptotically stable. By using the time delay as a bifurcation parameter, the local stability and Hopf bifurcation for the endemic state is investigated. Numerical results demonstrate that the system has periodic solution when time delay is larger than a critical values. The obtained results may provide some new insight to prevent the computer virus.  相似文献   

16.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

17.
In this paper, an HIV dynamics model with the proliferation of CD4 T cells is proposed. The authors consider nonnegativity, boundedness, global asymptotic stability of the solutions and bifurcation properties of the steady states. It is proved that the virus is cleared from the host under some conditions if the basic reproduction number R_0 is less than unity. Meanwhile, the model exhibits the phenomenon of backward bifurcation. We also obtain one equilibrium is semi-stable by using center manifold theory. It is proved that the endemic equilibrium is globally asymptotically stable under some conditions if R_0 is greater than unity. It also is proved that the model undergoes Hopf bifurcation from the endemic equilibrium under some conditions. It is novelty that the model exhibits two famous bifurcations,backward bifurcation and Hopf bifurcation. The model is extended to incorporate the specific Cytotoxic T Lymphocytes(CTLs) immune response. Stabilities of equilibria and Hopf bifurcation are considered accordingly. In addition, some numerical simulations for justifying the theoretical analysis results are also given in paper.  相似文献   

18.
An SIS Epidemic Model with Stage Structure and a Delay   总被引:12,自引:0,他引:12  
A disease transmission model of SIS type with stage structure and a delay is formulated. Stability of the disease free equilibrium, and existence, uniqueness, and stability of an endemic equilibrium, are investigated for the model. The stability results arc stated in terms of a key threshold parameter. The effects of stage structure and time delay on dynamical behavior of the infectious disease are analyzed. It is shown that stage structure has no effect on the epidemic model and Hopf bifurcation can occur as the time delay increases.  相似文献   

19.
对一种具有种群动力和非线性传染率的传染病模型进行了研究,建立了具有常数迁入率和非线性传染率βI~pS~q的SI模型.与以往的具有非线性传染率的传染病模型相比,这种模型引入了种群动力,也就是种群的总数不再为常数,因此,该类模型更精确地描述了传染病传播的规律.还讨论了模型的正不变集,运用微分方程稳定性理论分析了模型平衡点的存在性及稳定性,得出了疾病消除平衡点和地方病平衡点的全局渐进稳定的充分条件.进一步的,得出了在某些参数范围内会出现Hopf分支现象,并对上述模型进行了生物学讨论.  相似文献   

20.
一类具有时滞Holling-Ⅲ型捕食-食饵系统的Hopf分支   总被引:1,自引:0,他引:1  
研究了具有时滞的Holling-Ⅲ型捕食-食饵系统,其中捕食者的数量反应具有leslies形式.采用常微分定性与稳定性方法,推出了当τ=0时,正平衡点全局稳定性的充分条件,并考虑了时滞对于模型稳定性的影响,选取时滞τ作为分支参数,得出了在正平衡点附近产生Hopf分支.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号