首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
What does regressing Y on X versus regressing X on Y have to do with Markov chain Monte Carlo (MCMC)? It turns out that many strategies for speeding up data augmentation (DA) type algorithms can be understood as fostering independence or “de-correlation” between a regression function and the corresponding residual, thereby reducing or even eliminating dependence among MCMC iterates. There are two general classes of algorithms, those corresponding to regressing parameters on augmented data/auxiliary variables and those that operate the other way around. The interweaving strategy of Yu and Meng provides a general recipe to automatically take advantage of both, and it is the existence of two different types of residuals that makes the interweaving strategy seemingly magical in some cases and promising in general. The concept of residuals—which depends on actual data—also highlights the potential for substantial improvements when DA schemes are allowed to depend on the observed data. At the same time, there is an intriguing phase transition type of phenomenon regarding choosing (partially) residual augmentation schemes, reminding us once more of the prevailing issue of trade-off between robustness and efficiency. This article reports on these latest theoretical investigations (using a class of normal/independence models) and empirical findings (using a posterior sampling for a probit regression) in the search for effective residual augmentations—and ultimately more MCMC algorithms—that meet the 3-S criterion: simple, stable, and speedy. Supplementary materials for the article are available online.  相似文献   

2.
We discuss efficient Bayesian estimation of dynamic covariance matrices in multivariate time series through a factor stochastic volatility model. In particular, we propose two interweaving strategies to substantially accelerate convergence and mixing of standard MCMC approaches. Similar to marginal data augmentation techniques, the proposed acceleration procedures exploit nonidentifiability issues which frequently arise in factor models. Our new interweaving strategies are easy to implement and come at almost no extra computational cost; nevertheless, they can boost estimation efficiency by several orders of magnitude as is shown in extensive simulation studies. To conclude, the application of our algorithm to a 26-dimensional exchange rate dataset illustrates the superior performance of the new approach for real-world data. Supplementary materials for this article are available online.  相似文献   

3.
Conditional inference eliminates nuisance parameters by conditioning on their sufficient statistics. For contingency tables conditional inference entails enumerating all tables with the same sufficient statistics as the observed data. For moderately sized tables and/or complex models, the computing time to enumerate these tables is often prohibitive. Monte Carlo approximations offer a viable alternative provided it is possible to obtain samples from the correct conditional distribution. This article presents an MCMC extension of the importance sampling algorithm, using a rounded normal candidate to update randomly chosen cells while leaving the remainder of the table fixed. This local approximation can greatly increase the efficiency of the rounded normal candidate. By choosing the number of cells to be updated at random, a balance is struck between dependency in the Markov chain and accuracy of the candidate.  相似文献   

4.
通过添加缺损的寿命变量数据得到了带有不完全信息随机截尾试验下泊松分布参数多变点模型的完全数据似然函数,研究了变点位置参数和其它参数的满条件分布.利用Gibbs抽样与Metropolis-Hastings算法相结合的MCMC方法对各参数的满条件分布分别进行了抽样,把Gibbs样本的均值作为各参数的贝叶斯估计,并且详细介绍了MCMC方法的实施步骤.最后进行了随机模拟试验,试验结果表明各参数贝叶斯估计的精度都较高.  相似文献   

5.
Exact conditional goodness-of-fit tests for discrete exponential family models can be conducted via Monte Carlo estimation of p values by sampling from the conditional distribution of multiway contingency tables. The two most popular methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential importance sampling (SIS). In this work we consider various ways to hybridize the two schemes and propose one standout strategy as a good general purpose method for conducting inference. The proposed method runs many parallel chains initialized at SIS samples across the fiber. When a Markov basis is unavailable, the proposed scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by the MCMC and SIS schemes individually while largely retaining their strengths. It also provides diagnostics that guide and lend credibility to the procedure. Simulations demonstrate the viability of the approach.  相似文献   

6.
Stochastic epidemic models describe the dynamics of an epidemic as a disease spreads through a population. Typically, only a fraction of cases are observed at a set of discrete times. The absence of complete information about the time evolution of an epidemic gives rise to a complicated latent variable problem in which the state space size of the epidemic grows large as the population size increases. This makes analytically integrating over the missing data infeasible for populations of even moderate size. We present a data augmentation Markov chain Monte Carlo (MCMC) framework for Bayesian estimation of stochastic epidemic model parameters, in which measurements are augmented with subject-level disease histories. In our MCMC algorithm, we propose each new subject-level path, conditional on the data, using a time-inhomogenous continuous-time Markov process with rates determined by the infection histories of other individuals. The method is general, and may be applied to a broad class of epidemic models with only minimal modifications to the model dynamics and/or emission distribution. We present our algorithm in the context of multiple stochastic epidemic models in which the data are binomially sampled prevalence counts, and apply our method to data from an outbreak of influenza in a British boarding school. Supplementary material for this article is available online.  相似文献   

7.
The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor-dependent substitution models are analytically intractable and must be analyzed using either approximate or simulation-based methods. We describe statistical inference of neighbor-dependent models using a Markov chain Monte Carlo expectation maximization (MCMC-EM) algorithm. In the MCMC-EM algorithm, the high-dimensional integrals required in the EM algorithm are estimated using MCMC sampling. The MCMC sampler requires simulation of sample paths from a continuous time Markov process, conditional on the beginning and ending states and the paths of the neighboring sites. An exact path sampling algorithm is developed for this purpose.  相似文献   

8.
We propose a parsimonious extension of the classical latent class model to cluster categorical data by relaxing the conditional independence assumption. Under this new mixture model, named conditional modes model (CMM), variables are grouped into conditionally independent blocks. Each block follows a parsimonious multinomial distribution where the few free parameters model the probabilities of the most likely levels, while the remaining probability mass is uniformly spread over the other levels of the block. Thus, when the conditional independence assumption holds, this model defines parsimonious versions of the standard latent class model. Moreover, when this assumption is violated, the proposed model brings out the main intra-class dependencies between variables, summarizing thus each class with relatively few characteristic levels. The model selection is carried out by an hybrid MCMC algorithm that does not require preliminary parameter estimation. Then, the maximum likelihood estimation is performed via an EM algorithm only for the best model. The model properties are illustrated on simulated data and on three real data sets by using the associated R package CoModes. The results show that this model allows to reduce biases involved by the conditional independence assumption while providing meaningful parameters.  相似文献   

9.
Analyses of multivariate ordinal probit models typically use data augmentation to link the observed (discrete) data to latent (continuous) data via a censoring mechanism defined by a collection of “cutpoints.” Most standard models, for which effective Markov chain Monte Carlo (MCMC) sampling algorithms have been developed, use a separate (and independent) set of cutpoints for each element of the multivariate response. Motivated by the analysis of ratings data, we describe a particular class of multivariate ordinal probit models where it is desirable to use a common set of cutpoints. While this approach is attractive from a data-analytic perspective, we show that the existing efficient MCMC algorithms can no longer be accurately applied. Moreover, we show that attempts to implement these algorithms by numerically approximating required multivariate normal integrals over high-dimensional rectangular regions can result in severely degraded estimates of the posterior distribution. We propose a new data augmentation that is based on a covariance decomposition and that admits a simple and accurate MCMC algorithm. Our data augmentation requires only that univariate normal integrals be evaluated, which can be done quickly and with high accuracy. We provide theoretical results that suggest optimal decompositions within this class of data augmentations, and, based on the theory, recommend default decompositions that we demonstrate work well in practice. This article has supplementary material online.  相似文献   

10.
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis–Hastings and delayed-acceptance (DA) MCMC. Our ordering implies that IS is guaranteed to be competitive up to a factor depending on the supremum of the (marginal) IS weight. We elaborate upon the criterion in case of unbiased estimators as part of an auxiliary variable framework. We show how the criterion implies asymptotic variance guarantees for IS in terms of pseudo-marginal (PM) and DA corrections, essentially if the ratio of exact and approximate likelihoods is bounded. We also show that convergence of the IS chain can be less affected by unbounded high-variance unbiased estimators than PM and DA chains.  相似文献   

11.
Topic models, and more specifically the class of latent Dirichlet allocation (LDA), are widely used for probabilistic modeling of text. Markov chain Monte Carlo (MCMC) sampling from the posterior distribution is typically performed using a collapsed Gibbs sampler. We propose a parallel sparse partially collapsed Gibbs sampler and compare its speed and efficiency to state-of-the-art samplers for topic models on five well-known text corpora of differing sizes and properties. In particular, we propose and compare two different strategies for sampling the parameter block with latent topic indicators. The experiments show that the increase in statistical inefficiency from only partial collapsing is smaller than commonly assumed, and can be more than compensated by the speedup from parallelization and sparsity on larger corpora. We also prove that the partially collapsed samplers scale well with the size of the corpus. The proposed algorithm is fast, efficient, exact, and can be used in more modeling situations than the ordinary collapsed sampler. Supplementary materials for this article are available online.  相似文献   

12.
我们首先提出了一个带ARMA(1,1)条件异方差相关的随机波动模型,它是基本的随机波动模型的一个自然的推广.进一步,对于这一新模型,我们给出了一个马尔可夫链蒙特卡罗(M CM C)算法.最后,利用该模型的模拟数据,展示了M CM C算法在这种模型中的应用.  相似文献   

13.
We study MCMC algorithms for Bayesian analysis of a linear regression model with generalized hyperbolic errors. The Markov operators associated with the standard data augmentation algorithm and a sandwich variant of that algorithm are shown to be trace-class.  相似文献   

14.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

15.
We consider Bayesian analysis of data from multivariate linear regression models whose errors have a distribution that is a scale mixture of normals. Such models are used to analyze data on financial returns, which are notoriously heavy-tailed. Let π denote the intractable posterior density that results when this regression model is combined with the standard non-informative prior on the unknown regression coefficients and scale matrix of the errors. Roughly speaking, the posterior is proper if and only if nd+k, where n is the sample size, d is the dimension of the response, and k is number of covariates. We provide a method of making exact draws from π in the special case where n=d+k, and we study Markov chain Monte Carlo (MCMC) algorithms that can be used to explore π when n>d+k. In particular, we show how the Haar PX-DA technology studied in Hobert and Marchev (2008) [11] can be used to improve upon Liu’s (1996) [7] data augmentation (DA) algorithm. Indeed, the new algorithm that we introduce is theoretically superior to the DA algorithm, yet equivalent to DA in terms of computational complexity. Moreover, we analyze the convergence rates of these MCMC algorithms in the important special case where the regression errors have a Student’s t distribution. We prove that, under conditions on n, d, k, and the degrees of freedom of the t distribution, both algorithms converge at a geometric rate. These convergence rate results are important from a practical standpoint because geometric ergodicity guarantees the existence of central limit theorems which are essential for the calculation of valid asymptotic standard errors for MCMC based estimates.  相似文献   

16.
Label switching is a well-known problem in the Bayesian analysis of mixture models. On the one hand, it complicates inference, and on the other hand, it has been perceived as a prerequisite to justify Markov chain Monte Carlo (MCMC) convergence. As a result, nonstandard MCMC algorithms that traverse the symmetric copies of the posterior distribution, and possibly genuine modes, have been proposed. To perform component-specific inference, methods to undo the label switching and to recover the interpretation of the components need to be applied. If latent allocations for the design of the MCMC strategy are included, and the sampler has converged, then labels assigned to each component may change from iteration to iteration. However, observations being allocated together must remain similar, and we use this fundamental fact to derive an easy and efficient solution to the label switching problem. We compare our strategy with other relabeling algorithms on univariate and multivariate data examples and demonstrate improvements over alternative strategies. Supplementary materials for this article are available online.  相似文献   

17.
??Kundu and Gupta proposed to use the importance sampling method to compute the Bayesian estimation of the unknown parameters of the Marshall-Olkin bivariate Weibull distribution. However, we find that the performance of the importance sampling method becomes worse as the sample size gets larger. In this paper, we introduce latent variables to simplify the likelihood function, and use MCMC algorithm to estimate the unknown parameters. Numerical simulations are carried out to assess the performance of the proposed method by comparing with the maximum likelihood estimation, and we find that the Bayesian estimates perform better even for the case of small sample size. A real data is also analyzed for illustrative purpose.  相似文献   

18.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

19.
The correlation matrix (denoted by R) plays an important role in many statistical models. Unfortunately, sampling the correlation matrix in Markov chain Monte Carlo (MCMC) algorithms can be problematic. In addition to the positive definite constraint of covariance matrices, correlation matrices have diagonal elements fixed at one. In this article, we propose an efficient two-stage parameter expanded reparameterization and Metropolis-Hastings (PX-RPMH) algorithm for simulating R. Using this algorithm, we draw all elements of R simultaneously by first drawing a covariance matrix from an inverse Wishart distribution, and then translating it back to a correlation matrix through a reduction function and accepting it based on a Metropolis-Hastings acceptance probability. This algorithm is illustrated using multivariate probit (MVP) models and multivariate regression (MVR) models with a common correlation matrix across groups. Via both a simulation study and a real data example, the performance of the PX-RPMH algorithm is compared with those of other common algorithms. The results show that the PX-RPMH algorithm is more efficient than other methods for sampling a correlation matrix.  相似文献   

20.
This article compares three binary Markov random fields (MRFs) which are popular Bayesian priors for spatial smoothing. These are the Ising prior and two priors based on latent Gaussian MRFs. Concern is given to the selection of a suitable Markov chain Monte Carlo (MCMC) sampling scheme for each prior. The properties of the three priors and sampling schemes are investigated in the context of three empirical examples. The first is a simulated dataset, the second involves a confocal fluorescence microscopy dataset, while the third is based on the analysis of functional magnetic resonance imaging (fMRI) data. In the case of the Ising prior, single site and multi-site Swendsen-Wang sampling schemes are both considered. The single site scheme is shown to work consistently well, while it is shown that the Swendsen-Wang algorithm can have convergence problems. The sampling schemes for the priors are extended to generate the smoothing parameters, so that estimation becomes fully automatic. Although this works well, it is found that for highly contiguous images fixing smoothing parameters to very high values can improve results by injecting additional prior information concerning the level of contiguity in the image. The relative properties of the three binary MRFs are investigated, and it is shown how the Ising prior in particular defines sharp edges and encourages clustering. In addition, one of the latent Gaussian MRF priors is shown to be unable to distinguish between higher levels of smoothing. In the context of the fMRI example we also undertake a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号