首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Covariance Decompositions for Accurate Computation in Bayesian Scale-Usage Models
Authors:Chris Hans  Greg M Allenby  Peter F Craigmile  Juhee Lee  Steven N MacEachern    Xinyi Xu
Abstract:Analyses of multivariate ordinal probit models typically use data augmentation to link the observed (discrete) data to latent (continuous) data via a censoring mechanism defined by a collection of “cutpoints.” Most standard models, for which effective Markov chain Monte Carlo (MCMC) sampling algorithms have been developed, use a separate (and independent) set of cutpoints for each element of the multivariate response. Motivated by the analysis of ratings data, we describe a particular class of multivariate ordinal probit models where it is desirable to use a common set of cutpoints. While this approach is attractive from a data-analytic perspective, we show that the existing efficient MCMC algorithms can no longer be accurately applied. Moreover, we show that attempts to implement these algorithms by numerically approximating required multivariate normal integrals over high-dimensional rectangular regions can result in severely degraded estimates of the posterior distribution. We propose a new data augmentation that is based on a covariance decomposition and that admits a simple and accurate MCMC algorithm. Our data augmentation requires only that univariate normal integrals be evaluated, which can be done quickly and with high accuracy. We provide theoretical results that suggest optimal decompositions within this class of data augmentations, and, based on the theory, recommend default decompositions that we demonstrate work well in practice. This article has supplementary material online.
Keywords:Approximate transition kernel  Convergence rate  Data augmentation  Limiting distribution  MCMC  Multivariate ordinal probit  Truncated multivariate normal
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号