首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究一类具有连续投放和脉冲控制的害虫管理SI数学模型,证明了连续投放系统正平衡点的全局渐近稳定性,讨论了脉冲控制系统的持续性,并对所得结论进行了数值模拟.  相似文献   

2.
基于喷洒杀虫剂及释放病虫的脉冲控制害虫模型   总被引:1,自引:1,他引:0  
基于喷洒杀虫剂及释放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的F loquet理论、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性.  相似文献   

3.
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator–prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.  相似文献   

4.
In this paper, we formulate and investigate the pest control models in accordance with the mathematical theory of epidemiology. We assume that the release of infected pests is continuous and impulsive, respectively. Therefore, our models are the ordinary differential equations and the impulsive differential equations. We study the global stability of the equilibria of the ordinary differential equations. The permanence of the impulsive differential equations is proved. By means of numerical simulation, we obtain the critical values of the control variable under different methods of release of infected pests. Thus, we provide a mathematical evidence in the management of an epidemic controlling a pest.  相似文献   

5.
基于综合害虫管理,提出并研究了一类具有脉冲效应和Holling Ⅱ类功能反应的两个捕食者一个食饵系统.利用脉冲微分方程的Floquet理论和比较定理,得到了系统灭绝和持续生存的充分条件.最后,简要讨论了该综合害虫管理策略的有效性及系统在周期脉冲扰动下的动力复杂性.  相似文献   

6.
In this paper, we consider a stage-structured pest management SI model with time delay and diseased pests impulsive transmission. We obtain the sufficient conditions of the global attractivity of pest-extinction boundary periodic solution and the permanence of the system. We also prove that all solutions of the system are uniformly ultimately bounded. Our results provide a reliable tactic basis for the practice of pest management.  相似文献   

7.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

8.
陶有德 《大学数学》2011,27(5):27-32
研究一类具有脉冲效应的害虫管理系统,讨论了系统的灭绝性和持续性,给出了系统灭绝和持续生存的阈值条件,并对所得结论进行了数值模拟.  相似文献   

9.
In this paper, a stage-structured pest management SI model with impulsive perturbations on infected pest is introduced. Sufficient conditions of the global attractivity of pest-extinction periodic solution and permanence of the system are obtained. We also prove that all solutions of system are uniformly ultimately bounded.  相似文献   

10.
A predator–prey system with two impulses on the diseased prey is formulated and analyzed for the purpose of integrated pest management. The local and global stability of the susceptible pest‐eradication periodic solution, as well as the permanence of the system, are obtained under the sufficient conditions by means of Floquet's theory for impulsive differential equations. Finally, we interpret our mathematical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Based on the classical stage-structured model and Lotka–Volterra predator–prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the ‘pest-extinction’ (‘prey-eradication’) periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator–prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.  相似文献   

12.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

13.
讨论了与害虫治理相关的一类捕食者具脉冲扰动与食饵具有化学控制的阶段结构时滞捕食-食饵模型,得到了害虫灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.得出的结论为现实的害虫治理提供了可靠的策略依据.  相似文献   

14.
In this paper, by using pollution model and impulsive delay differential equation, we investigate the dynamics of a pest control model with age structure for pest by introducing a constant periodic pesticide input and releasing natural enemies at different fixed moment. We assume only the pests are affected by pesticide. We show that there exists a global attractive pest-extinction periodic solution when the periodic natural enemies release amount μ1 and pesticide input amount μ2 are larger than some critical value. Further, the condition for the permanence of the system is also given. By numerical analyses, we also show that constant maturation time delay, pulse pesticide input and pulse releasing of the natural enemies can bring obvious effects on the dynamics of system. We believe that the results will provide reliable tactic basis for the practical pest management.  相似文献   

15.
讨论了具有非线性传染率与脉冲控制的害虫管理S-I传染病模型,此模型考虑的是脉冲投放病虫和喷洒农药.不但得到了系统的所有解的一致完全有界,而且得到了害虫灭绝的边界周期解的全局渐进稳定和系统的一致持久的条件.为实际的害虫管理提供了可靠的理论依据.  相似文献   

16.
研究了一个关于害虫防治的有脉冲效应以及年龄结构和时滞的捕食-被捕食模型,得到了害虫根除的周期解全局吸引以及系统持久的充分条件,同时证明了系统所有的解是一致最终有界的.这些结果能为害虫防治的实际操作提供一定的理论依据.  相似文献   

17.
The agricultural pests can be controlled effectively by simultaneous use (i.e., hybrid approach) of biological and chemical control methods. Also, many insect natural enemies have two major life stages, immature and mature. According to this biological background, in this paper, we propose a three tropic level plant–pest–natural enemy food chain model with stage structure in natural enemy. Moreover, impulsive releasing of natural enemies and harvesting of pests are also considered. We obtain that the system has two types of periodic solutions: plant–pest-extinction and pest-extinction using stroboscopic maps. The local stability for both periodic solutions is studied using the Floquet theory of the impulsive equation and small amplitude perturbation techniques. The sufficient conditions for the global attractivity of a pest-extinction periodic solution are determined by the comparison technique of impulsive differential equations. We analyze that the global attractivity of a pest-extinction periodic solution and permanence of the system are evidenced by a threshold limit of an impulsive period depending on pulse releasing and harvesting amounts. Finally, numerical simulations are given in support of validation of the theoretical findings.  相似文献   

18.
讨论了与害虫管理相关的一类捕食者具脉冲扰动与相互干扰的阶段结构时滞捕食-食饵模型,得到了害虫灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.我们的结论为现实的害虫管理提供了一定的理论依据.  相似文献   

19.
In this paper, we investigate the dynamic behavior of an eco-epidemic model with impulsive control strategy. By using Floquet theorem of impulsive differential equation, we show there is a globally stable prey eradication periodic solution when the impulsive period is less than some critical value. We study the permanence of the system. Numerical simulations show that the complex dynamics of the system depends on the values of impulsive period and impulsive perturbation, for example double period, triple period solutions.  相似文献   

20.
In this paper, we consider an integrated pest management model with disease in the pest and a stage structure for its natural predator, which is subject to impulsive and periodic controls. A nonlinear incidence rate expressed in an abstract form, is used to describe the propagation of the disease, which is spread through the periodic release of infective pests, the functional response of the mature predator also being given in an abstract, unspecified form. Sufficient conditions for the local and global stability of the susceptible pest-eradication periodic solution are found by means of Floquet theory and comparison methods, the permanence of the system also being discussed. These stability conditions are shown to be biologically significant, being reformulated as balance conditions for the susceptible pest class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号