首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we define a class of strongly connected digraph, called the k-walk- regular digraph, study some properties of it, provide its some algebraic characterization and point out that the 0-walk-regular digraph is the same as the walk-regular digraph discussed by Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004.  相似文献   

2.
The Legendre–Stirling numbers are the coefficients in the integral Lagrangian symmetric powers of the classical Legendre second-order differential expression. In many ways, these numbers mimic the classical Stirling numbers of the second kind which play a similar role in the integral powers of the classical second-order Laguerre differential expression. In a recent paper, Andrews and Littlejohn gave a combinatorial interpretation of the Legendre–Stirling numbers. In this paper, we establish several properties of the Legendre–Stirling numbers; as with the Stirling numbers of the second kind, they have interesting generating functions and recurrence relations. Moreover, there are some surprising and intriguing results relating these numbers to some classical results in algebraic number theory.  相似文献   

3.
李凤琴 《大学数学》2013,(6):116-119
通过计算两个广义的范德蒙(Vandermonde)行列式,得到了第一类无符号Stirling数和第二类Stirling数的一种新的表示方法:用行列式来表示.  相似文献   

4.
朱伟义 《大学数学》2006,22(1):83-86
利用第一、二类高阶Bernoulli数和二类Stirling数S1(n,k),S2(n,k)的定义.研究了二类高阶Bernoulli数母函数的幂级数展开,揭示了二类高阶Bernoulli数之间以及与第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间的内在联系,得到了几个关于二类高阶Bernoulli数和第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间有趣的恒等式.  相似文献   

5.
The classical polynomials (Hermite, Laguerre, Bessel and Jacobi) are the only orthogonal polynomial sequences (OPS) whose elements are eigenfunctions of the Bochner second-order differential operator F (Bochner, 1929 [3]). In Loureiro, Maroni and da Rocha (2006) [18] these polynomials were described as eigenfunctions of an even order differential operator Fk with polynomial coefficients defined by a recursive relation. Here, an explicit expression of Fk for any positive integer k is given. The main aim of this work is to explicitly establish sums relating any power of F with Fk, k?1, in other words, to bring a pair of inverse relations between these two operators. This goal is accomplished with the introduction of a new sequence of numbers: the so-called A-modified Stirling numbers, which could be also called as Bessel or Jacobi-Stirling numbers, depending on the context and the values of the complex parameter A.  相似文献   

6.
In this article we introduce a plethystic generalization of the exponential polynomials and their umbral inverses. We obtain recursive formulas for both families of polynomials, and use them to get recursions for the plethystic Stirling numbers of the first and second kind and for the plethystic Bell numbers. Finally, we apply Bergeron's S-species to obtain a Dobinsky formula for the plethystic exponential polynomials and a close formula for the plethystic Stirling numbers of the second kind.  相似文献   

7.
Here presented is a unified approach to generalized Stirling functions by using generalized factorial functions, k-Gamma functions, generalized divided difference, and the unified expression of Stirling numbers defined in [16]. Previous well-known Stirling functions introduced by Butzer and Hauss [4], Butzer, Kilbas, and Trujilloet [6] and others are included as particular cases of our generalization. Some basic properties related to our general pattern such as their recursive relations, generating functions, and asymptotic properties are discussed,which extend the corresponding results about the Stirling numbers shown in [21] to the defined Stirling functions.  相似文献   

8.
本文证明了广义Stirling数偶的一些同余性质,从而回答了文[5]中的一个猜测.这些结果做为特例推广了已知的关于两类Stirling数的同余性质.  相似文献   

9.
In this paper, we consider a kind of sums involving Cauchy numbers, which have not been studied in the literature. By means of the method of coefficients, we give some properties of the sums. We further derive some recurrence relations and establish a series of identities involving the sums, Stirling numbers, generalized Bernoulli numbers, generalized Euler numbers, Lah numbers, and harmonic numbers. In particular, we generalize some relations between two kinds of Cauchy numbers and some identities for Cauchy numbers and Stirling numbers.  相似文献   

10.
Multirestricted Stirling numbers of the second kind count the number of partitions of a given set into a given number of parts, each part being restricted to at most a fixed number of elements. Multirestricted numbers of the first kind are then defined as elements of the matrix inverse to the matrix of corresponding multirestricted numbers of the second kind. The anomalous sign behavior of these latter numbers makes them impervious to combinatorial analysis. In answer to a conjecture that has remained open for several years, we derive a reciprocity law for multirestricted Stirling numbers using algebraic techniques based on polynomial recursions. As corollaries, we obtain new recurrence relations for multirestricted numbers, and a new algebraic derivation of the reciprocity law for Stirling numbers.  相似文献   

11.
Starting with two little-known results of Saalschütz, we derive a number of general recurrence relations for Bernoulli numbers. These relations involve an arbitrarily small number of terms and have Stirling numbers of both kinds as coefficients. As special cases we obtain explicit formulas for Bernoulli numbers, as well as several known identities.  相似文献   

12.
The Jacobi–Stirling numbers of the first and second kinds were first introduced in Everitt et al. (2007) [8] and they are a generalization of the Legendre–Stirling numbers. Quite remarkably, they share many similar properties with the classical Stirling numbers. In this paper we study total positivity properties of these numbers. In particular, we prove that the matrix whose entries are the Jacobi–Stirling numbers is totally positive and that each row and each column is a Pólya frequency sequence, except for the columns with (unsigned) numbers of the first kind.  相似文献   

13.
Combinatorics of Nilpotents in Symmetric Inverse Semigroups   总被引:2,自引:0,他引:2  
We show how several famous combinatorial sequences appear in the context of nilpotent elements of the full symmetric inverse semigroup . These sequences appear either as cardinalities of certain nilpotent subsemigroups or as the numbers of special nilpotent elements and include the Lah numbers, the Bell numbers, the Stirling numbers of the second kind, the binomial coefficients and the Catalan numbers.AMS Subject Classification: 05A15, 20M18, 20M20, 05A19.  相似文献   

14.
The summation of some series involving the Stirling numbers of the first kind can be found in several works but there is no such a computation for Stirling numbers of the second kind let alone the r-Stirlings. We offer a comprehensive survey and prove new results.   相似文献   

15.
We prove a general symmetric identity involving the degenerate Bernoulli polynomials and sums of generalized falling factorials, which unifies several known identities for Bernoulli and degenerate Bernoulli numbers and polynomials. We use this identity to describe some combinatorial relations between these polynomials and generalized factorial sums. As further applications we derive several identities, recurrences, and congruences involving the Bernoulli numbers, degenerate Bernoulli numbers, generalized factorial sums, Stirling numbers of the first kind, Bernoulli numbers of higher order, and Bernoulli numbers of the second kind.  相似文献   

16.
From a delta series f(t) and its compositional inverse g(t), Hsu defined the generalized Stirling number pair . In this paper, we further define from f(t) and g(t) the generalized higher order Bernoulli number pair . Making use of the Bell polynomials, the potential polynomials as well as the Lagrange inversion formula, we give some explicit expressions and recurrences of the generalized higher order Bernoulli numbers, present the relations between the generalized higher order Bernoulli numbers of both kinds and the corresponding generalized Stirling numbers of both kinds, and study the relations between any two generalized higher order Bernoulli numbers. Moreover, we apply the general results to some special number pairs and obtain series of combinatorial identities. It can be found that the introduction of generalized Bernoulli number pair and generalized Stirling number pair provides a unified approach to lots of sequences in mathematics, and as a consequence, many known results are special cases of ours.  相似文献   

17.
高阶Euler多项式的推广及其应用   总被引:1,自引:0,他引:1  
雒秋明  刘爱启 《数学杂志》2006,26(5):574-578
利用Apostol的方法,推广了高阶Euler数和多项式,得到了它们分别用第二类Stirling数和Gauss超几何函数表示的公式,最后给出了一些相应的特殊情况和应用.  相似文献   

18.
For a wide class of discrete distributions, we derive a representation of the inverse (negative) moments through the Stirling numbers of the first kind and inverse factorial moments. We specialize the results for the Poisson, binomial, hypergeometric and negative binomial distributions.  相似文献   

19.
利用初等方法研究Chebyshev多项式的性质,建立了广义第二类Chebyshev多项式的一个显明公式,并得到了一些包含第一类Chebyshev多项式,第一类Stirling数和Lucas数的恒等式.  相似文献   

20.
In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号