首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data envelopment analysis (DEA) is a non-parametric technique to assess the performance of a set of homogeneous decision making units (DMUs) with common crisp inputs and outputs. Regarding the problems that are modelled out of the real world, the data cannot constantly be precise and sometimes they are vague or fluctuating. So in the modelling of such data, one of the best approaches is using the fuzzy numbers. Substituting the fuzzy numbers for the crisp numbers in DEA, the traditional DEA problem transforms into a fuzzy data envelopment analysis (FDEA) problem. Different methods have been suggested to compute the efficiency of DMUs in FDEA models so far but the most of them have limitations such as complexity in calculation, non-contribution of decision maker in decision making process, utilizable for a specific model of FDEA and using specific group of fuzzy numbers. In the present paper, to overcome the mentioned limitations, a new approach is proposed. In this approach, the generalized FDEA problem is transformed into a parametric programming, in which, parameter selection depends on the decision maker’s ideas. Two numerical examples are used to illustrate the approach and to compare it with some other approaches.  相似文献   

2.
In the literature, several methods are proposed for solving transportation problems in fuzzy environment but in all the proposed methods the parameters are represented by normal fuzzy numbers. [S.H. Chen, Operations on fuzzy numbers with function principal, Tamkang Journal of Management Sciences 6 (1985) 13–25] pointed out that in many cases it is not to possible to restrict the membership function to the normal form and proposed the concept of generalized fuzzy numbers. There are several papers in the literature in which generalized fuzzy numbers are used for solving real life problems but to the best of our knowledge, till now no one has used generalized fuzzy numbers for solving the transportation problems. In this paper, a new method is proposed for solving fuzzy transportation problems by assuming that a decision maker is uncertain about the precise values of the transportation cost, availability and demand of the product. In the proposed method transportation cost, availability and demand of the product are represented by generalized trapezoidal fuzzy numbers. To illustrate the proposed method a numerical example is solved and the obtained results are compared with the results of existing methods. Since the proposed method is a direct extension of classical method so the proposed method is very easy to understand and to apply on real life transportation problems for the decision makers.  相似文献   

3.
The Advantages of Fuzzy Optimization Models in Practical Use   总被引:1,自引:0,他引:1  
Classical mathematical programming models require well-defined coefficients and right hand sides. In order to avoid a non satisfying modeling usually a broad information gathering and processing is necessary. In case of real problems some model parameters can be only roughly estimated. While in case of classical models the vague data is replaced by "average data", fuzzy models offer the opportunity to model subjective imaginations of the decision maker as precisely as a decision maker will be able to describe it. Thus the risk of applying a wrong model of the reality and selecting solutions which do not reflect the real problem can be clearly reduced. The modeling of real problems by means of deterministic and stochastic models requires extensive information processing. On the other hand we know that an optimum solution is finally defined only by few restrictions. Especially in case of larger systems we notice afterwards that most of the information is useless. The dilemma of data processing is due to the fact that first we have to calculate the solution in order to define, whether the information must be well-defined or whether vague data may be sufficient. Based on multicriteria programming problems it should be demonstrated that the dilemma of data processing in case of real programming problems can be handled adequately by modeling them as fuzzy system combined with an interactive problem-solving. Describing the real problem by means of a fuzzy system first of all only the available information or such information which can be achieved easily will be considered. Then we try to develop an optimum solution. With reference to the cost-benefit relation further information can be gathered in order to describe the solution more precisely. Furthermore it should be pointed out that some interactive fuzzy solution algorithms, e.g. FULPAL provide the opportunity to solve mixed integer multicriteria programming models as well.  相似文献   

4.
Real decision problems usually consider several objectives that have parameters which are often given by the decision maker in an imprecise way. It is possible to handle these kinds of problems through multiple criteria models in terms of possibility theory.Here we propose a method for solving these kinds of models through a fuzzy compromise programming approach.To formulate a fuzzy compromise programming problem from a possibilistic multiobjective linear programming problem the fuzzy ideal solution concept is introduced. This concept is based on soft preference and indifference relationships and on canonical representation of fuzzy numbers by means of their α-cuts. The accuracy between the ideal solution and the objective values is evaluated handling the fuzzy parameters through their expected intervals and a definition of discrepancy between intervals is introduced in our analysis.  相似文献   

5.
The estimate of the parameters which define a conventional multiobjective decision making model is a difficult task. Normally they are either given by the Decision Maker who has imprecise information and/or expresses his considerations subjectively, or by statistical inference from the past data and their stability is doubtful. Therefore, it is reasonable to construct a model reflecting imprecise data or ambiguity in terms of fuzzy sets and several fuzzy approaches to multiobjective programming have been developed 1, 9, 10, 11. The fuzziness of the parameters gives rise to a problem whose solution will also be fuzzy, see 2, 3, and which is defined by its possibility distribution. Once the possibility distribution of the solution has been obtained, if the decision maker wants more precise information with respect to the decision vector, then we can pose and solve a new problem. In this case we try to find a decision vector, which approximates as much as possible the fuzzy objectives to the fuzzy solution previously obtained. In order to solve this problem we shall develop two different models from the initial solution and based on Goal Programming: an Interval Goal Programming Problem if we define the relation “as accurate as possible” based on the expected intervals of fuzzy numbers, as we showed in [4], and an ordinary Goal Programming based on the expected values of the fuzzy numbers that defined the goals. Finally, we construct algorithms that implement the above mentioned solution method. Our approach will be illustrated by means of a numerical example.  相似文献   

6.
In this paper, by considering the experts' vague or fuzzy understanding of the nature of the parameters in the problem formulation process, multiobjective linear fractional programming problems with block angular structure involving fuzzy numbers are formulated. Using the a-level sets of fuzzy numbers, the corresponding nonfuzzy a-multiobjective linear fractional programming problem is introduced. The fuzzy goals of the decision maker for the objective functions are quantified by eliciting the corresponding membership functions including nonlinear ones. Through the introduction of extended Pareto optimality concepts, if the decision maker specifies the degree a and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the minimax problems for which the Dantzig-Wolfe decomposition method and Ritter's partitioning procedure are applicable. Then a linear programming-based interactive fuzzy satisficing method with decomposition procedures for deriving a satisficing solution for the decision maker efficiently from an extended Pareto optimal solution set is presented. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

7.
In conventional multiobjective decision making problems, the estimation of the parameters of the model is often a problematic task. Normally they are either given by the decision maker (DM), who has imprecise information and/or expresses his considerations subjectively, or by statistical inference from past data and their stability is doubtful. Therefore, it is reasonable to construct a model reflecting imprecise data or ambiguity in terms of fuzzy sets for which a lot of fuzzy approaches to multiobjective programming have been developed. In this paper we propose a method to solve a multiobjective linear programming problem involving fuzzy parameters (FP-MOLP), whose possibility distributions are given by fuzzy numbers, estimated from the information provided by the DM. As the parameters, intervening in the model, are fuzzy the solutions will be also fuzzy. We propose a new Pareto Optimal Solution concept for fuzzy multiobjective programming problems. It is based on the extension principle and the joint possibility distribution of the fuzzy parameters of the problem. The method relies on α-cuts of the fuzzy solution to generate its possibility distributions. These ideas are illustrated with a numerical example.  相似文献   

8.
Ranking of fuzzy numbers play an important role in decision making, optimization and forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples, it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (3): 6833) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The proposed ranking approach is based on rank and mode so it is named as an RM approach. The main advantage of the proposed approach is that the proposed approach provides the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (3): 375).  相似文献   

9.
The major purpose of this paper is to apply a stochastic single-period inventory management approach to analyze optimal cash management policies with fuzzy cash demand based on fuzzy integral method so that total cost is minimized. We will find that, after defuzzification, the cash-raising amounts and the total costs between the fuzzy case and the crisp case are slightly different when the variation of cash demand is small. As a result, we point out that the fuzzy stochastic single-period model is one extension of the crisp models. In any case, one may conclude that a conscientious analysis in fuzzy mathematics like that presented in this paper provides a financial decision maker with a deeper insight into the more real cash management problem.  相似文献   

10.
The decision making problem considered in this paper is to rank n alternatives from the best to the worst, using the information given by the decision maker in the form of an \(n\times n\) pairwise comparison matrix. Here, we deal with pairwise comparison matrices with fuzzy elements. Fuzzy elements of the pairwise comparison matrix are applied whenever the decision maker is not sure about the value of his/her evaluation of the relative importance of elements in question. We investigate pairwise comparison matrices with elements from abelian linearly ordered group (alo-group) over a real interval. The concept of reciprocity and consistency of pairwise comparison matrices with fuzzy elements have been already studied in the literature. Here, we define stronger concepts, namely the strong reciprocity and strong consistency of pairwise comparison matrices with fuzzy intervals as the matrix elements (PCF matrices), derive the necessary and sufficient conditions for strong reciprocity and strong consistency and investigate their properties as well as some consequences to the problem of ranking the alternatives.  相似文献   

11.
Carlson and Fuller (2001, Fuzzy Sets and Systems, 122, 315–326) introduced the concept of possibilistic mean, variance and covariance of fuzzy numbers. In this paper, we extend some of these results to a nonlinear type of fuzzy numbers called adaptive fuzzy numbers (see Bodjanova (2005, Information Science, 172, 73–89) for detail). We then discuss the application of these results to decision making problems in which the parameters may involve uncertainty and vagueness. As an application, we develop expression for fuzzy net present value (FNPV) of future cash flows involving adaptive fuzzy numbers by using their possibilistic moments. An illustrative numerical example is given to illustrate the results.  相似文献   

12.
For decision making problems involving uncertainty, both stochastic programming as an optimization method based on the theory of probability and fuzzy programming representing the ambiguity by fuzzy concept have been developing in various ways. In this paper, we focus on multiobjective linear programming problems with random variable coefficients in objective functions and/or constraints. For such problems, as a fusion of these two approaches, after incorporating fuzzy goals of the decision maker for the objective functions, we propose an interactive fuzzy satisficing method for the expectation model to derive a satisficing solution for the decision maker. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

13.
This paper proposes a new method for ranking fuzzy numbers based on the area between circumcenter of centroids of a fuzzy number and the origin. The proposed method not only uses an index of optimism, which reflects the decision maker’s optimistic attitude but also makes use of an index of modality which represents the importance of mode and spreads. This method ranks various types of fuzzy numbers which includes normal, generalized trapezoidal and triangular fuzzy numbers along with crisp numbers which are a special case of fuzzy numbers. Some numerical examples are presented to illustrate the validity and advantages of the proposed method.  相似文献   

14.
Although a number of recent studies have proposed ranking fuzzy numbers based on the deviation degree, most of them have exhibited several shortcomings associated with non-discriminative and counter-intuitive problems. In fact, none of the existing deviation degree methods has guaranteed consistencies between the ranking of fuzzy numbers and that of their images under all situations. They have also ignored decision maker’s attitude toward risk, which significantly influences final ranking result. To overcome the above-mentioned drawbacks, this study proposes a new approach for ranking fuzzy numbers that ensures full consideration for all information of fuzzy numbers. Accordingly, an overall ranking index is obtained by the integration of the information from the left and the right (LR) areas between fuzzy numbers, the centroid points of fuzzy numbers and the decision maker’s attitude toward risk. This new method is efficient for evaluating generalized fuzzy numbers and distinguishing symmetric fuzzy numbers. It also overcomes the shortcomings of the existing approaches based on deviation degree. Several numerical examples are provided to illustrate the superiority of the proposed approach. Lastly, a new fuzzy MCDM approach for generalized fuzzy numbers is proposed based on the proposed ranking approach and the concept of generalized fuzzy numbers. The proposed fuzzy MCDM approach does not require the normalization process and thus avoids the loss of information results from transforming generalized fuzzy numbers to normal form.  相似文献   

15.
在决策过程中TODIM方法能有效的捕捉决策者的心理行为。犹豫毕达哥拉斯模糊集不但能反映正反两个方面的不确定性,而且能反映决策者的犹豫程度。本文将TODIM方法扩展到犹豫毕达哥拉斯模糊集。首先定义了犹豫毕达哥拉斯模糊环境下的测量函数,用于比较两个犹豫毕达哥拉斯模糊数的大小,其次计算每个备选方案相对其它备选方案的相对优势度,然后根据相对优势度选出最佳方案。最后,用航空公司服务质量的评估来说明本文给出方法的可行性和有效性。  相似文献   

16.
In the ever changing financial markets, investor’s decision behaviors may change from time to time. In this paper, we consider the effect of investor’s different decision behaviors on portfolio selection in fuzzy environment. We present a possibilistic mean-semivariance model for fuzzy portfolio selection by considering some real investment features including proportional transaction cost, fixed transaction cost, cardinality constraint, investment threshold constraints, decision dependency constraints and minimum transaction lots. To describe investor’s different decision behaviors, we characterize the return rates on securities by LR fuzzy numbers with different shape parameters in the left- and right-hand reference functions. Then, we design a novel hybrid differential evolution algorithm to solve the proposed model. Finally, we provide a numerical example to illustrate the application of our model and the effectiveness of the designed algorithm.  相似文献   

17.
Starting from fuzzy real numbers with an arbitrary lattice of belief and following the extension principle, we develop concepts of fuzzy probabilities, transition probabilities and random variables and of their combinations, and show that these concepts are consistent. We derive some results on fuzzy real numbers, on the expectation of fuzzy random variables and on fuzzy stochastic processes. To sketch the range of applications of fuzzy stochastics, we give two examples that show how real-world problems may be modeled by means of fuzzy probabilities and that give small numerical examples. Moreover, we give a brief outlook for a possible expansion of our theory to fuzzy Markovian decision processes by means of a partial order on the set of all fuzzy real numbers.  相似文献   

18.
针对Pythagorean模糊群决策问题,提出一种基于Pythagorean模糊混合平均算子的决策方法。首先,提出一种基于Pythagorean模糊信息及其运算法则的Pythagorean模糊混合平均算子;其次,构建一种基于最大熵模型的属性位置权重定权方法,同时根据灰色关联方法提出一种属性客观权重计算方法,进而获得Pythagorean模糊混合平均算子的定权方法;利用Pythagorean模糊混合平均算子对单决策者信息进行融合,通过Pythagorean模糊加权平均算子对各专家信息进行融合,并依据得分函数与精确函数进行排序择优;最后,通过一个算例说明该方法的有效性和可行性。  相似文献   

19.
In this paper, a new fuzzy linear programming based methodology using a specific membership function, named as modified logistic membership function is proposed. The modified logistic membership function is first formulated and its flexibility in taking up vagueness in parameters is established by an analytical approach. This membership function is tested for its useful performance through an illustrative example by employing fuzzy linear programming. The developed methodology of FLP has provided a confidence in applying to real life industrial production planning problem. This approach of solving industrial production planning problem can have feed back within the decision maker, the implementer and the analyst. In such case this approach can be called as IFLP (Interactive Fuzzy Linear Programming). There is a possibility to design the self organizing of fuzzy system for the mix products selection problem in order to find the satisfactory solution. The decision maker, the analyst and the implementer can incorporate their knowledge and experience to obtain the best outcome.  相似文献   

20.
On the basis of a known application of an order weighted averaging operator to the decision making in the case of a discrete set of states of nature, a general approach to the case of a continuous set of states of nature is proposed. The general approach encompasses various types of attitudes of the decision maker, expressed in the form of fuzzy numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号