首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于寻找分离超平面的三种经典线搜索技术,本文提出了一种自适应线搜索技术.结合谱梯度投影法,提出了凸约束非光滑单调方程组的一个谱梯度投影算法.该算法不需要计算和存储任何矩阵,因而适合求解大规模非光滑的非线性单调方程组.在较弱的条件下,证明了方法的全局收敛性,并分析了算法的收敛率.数值试验结果表明算法是有效的和鲁棒的.  相似文献   

2.
基于修正拟牛顿方程, 利用Goldstein-Levitin-Polyak (GLP)投影技术, 建立了 求解带凸集约束的优化问题的两阶段步长Zhang H.C.非单调变尺度梯度投影方法, 证明了算法的全局收敛性. 数值实验表明算法是有效的, 适合求解大规模问题.  相似文献   

3.
基于修正拟牛顿方程,利用Goldstein-Levitin-Polyak(GLP)投影技术,建立了求解带凸集约束的优化问题的两阶段步长非单调变尺度梯度投影算法,证明了算法的全局收敛性和一定条件下的Q超线性收敛速率.数值结果表明新算法是有效的,适合求解大规模问题.  相似文献   

4.
给求解无约束规划问题的记忆梯度算法中的参数一个特殊取法,得到目标函数的记忆梯度G o ldste in-L av in tin-Po lyak投影下降方向,从而对凸约束的非线性规划问题构造了一个记忆梯度G o ldste in-L av in tin-Po lyak投影算法,并在一维精确步长搜索和去掉迭代点列有界的条件下,分析了算法的全局收敛性,得到了一些较为深刻的收敛性结果.同时给出了结合FR,PR,HS共轭梯度算法的记忆梯度G o ldste in-L av in tin-Po lyak投影算法,从而将经典共轭梯度算法推广用于求解凸约束的非线性规划问题.数值例子表明新算法比梯度投影算法有效.  相似文献   

5.
借助谱梯度法和HS共轭梯度法的结构, 建立一种求解非线性单调方程组问题的谱HS投影算法. 该算法继承了谱梯度法和共轭梯度法储存量小和计算简单的特征, 且不需要任何导数信息, 因此它适应于求解大规模非光滑的非线性单调方程组问题. 在适当的条件下, 证明了该算法的收敛性, 并通过数值实验表明了该算法的有效性.  相似文献   

6.
孙清滢 《计算数学》2004,26(4):401-412
本文利用广义投影矩阵,对求解无约束规划的超记忆梯度算法中的参数给出一种新的取值范围以保证得到目标函数的超记忆梯度广义投影下降方向,并与处理任意初始点的方法技巧结合建立求解非线性不等式约束优化问题的一个初始点任意的超记忆梯度广义投影算法,在较弱条件下证明了算法的收敛性.同时给出结合FR,PR,HS共轭梯度参数的超记忆梯度广义投影算法,从而将经典的共轭梯度法推广用于求解约束规划问题.数值例子表明算法是有效的.  相似文献   

7.
刘金魁 《计算数学》2016,38(2):113-124
本文在著名PRP共轭梯度算法的基础上研究了一种无导数谱PRP投影算法,并证明了算法在求解带有凸约束条件的非线性单调方程组问题的全局收敛性.由于无导数和储存量小的特性,它更适应于求解大规模非光滑的非线性单调方程组问题.数值试验表明,新算法对给定的测试问题是有效的和稳定的.  相似文献   

8.
本文提出了投影梯度算法结合非单调信赖技术解不等式约束优化问题,获得了算法的整体收敛性的证明.  相似文献   

9.
对闭凸集约束的非线性规划问题构造了一个修正共轭梯度投影下降算法,在去掉迭代点列有界的条件下,分析了算法的全局收敛性.新算法与共轭梯度参数结合,给出了三类结合共轭梯度参数的修正共轭梯度投影算法.数值例子表明算法是有效的.  相似文献   

10.
孙清滢 《数学进展》2004,33(5):598-606
利用Rosen投影矩阵,建立求解带线性或非线性不等式约束优化问题的三项记忆梯度Rosen投影下降算法,并证明了算法的收敛性.同时给出了结合FR,PR,HS共轭梯度参数的三项记忆梯度Rosen投影算法,从而将经典的共轭梯度法推广用于求解约束规划问题.数值例子表明算法是有效的。  相似文献   

11.
Two trust regions algorithms for unconstrained nonlinear optimization problems are presented: a monotone and a nonmonotone one. Both of them solve the trust region subproblem by the spectral projected gradient (SPG) method proposed by Birgin, Martínez and Raydan (in SIAM J. Optim. 10(4):1196?C1211, 2000). SPG is a nonmonotone projected gradient algorithm for solving large-scale convex-constrained optimization problems. It combines the classical projected gradient method with the spectral gradient choice of steplength and a nonmonotone line search strategy. The simplicity (only requires matrix-vector products, and one projection per iteration) and rapid convergence of this scheme fits nicely with globalization techniques based on the trust region philosophy, for large-scale problems. In the nonmonotone algorithm the trial step is evaluated by acceptance via a rule which can be considered a generalization of the well known fraction of Cauchy decrease condition and a generalization of the nonmonotone line search proposed by Grippo, Lampariello and Lucidi (in SIAM J. Numer. Anal. 23:707?C716, 1986). Convergence properties and extensive numerical results are presented. Our results establish the robustness and efficiency of the new algorithms.  相似文献   

12.
In this paper, we consider a multivariate spectral projected gradient (MSPG) method for bound constrained optimization. Combined with a quasi-Newton property, the multivariate spectral projected gradient method allows an individual adaptive step size along each coordinate direction. On the basis of nonmonotone line search, global convergence is established. A numerical comparison with the traditional SPG method shows that the method is promising.  相似文献   

13.
The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spectral choice of steplength to accept preconditioned directions when a good preconditioner is available. We present an algorithmthat combines the spectral projected gradient method with preconditioning strategies toincrease the local speed of convergence while keeping the global properties. We discuss implementation details for solving large-scale problems.  相似文献   

14.
The spectral gradient method has proved to be effective for solving large-scale uncon-strained optimization problems.It has been recently extended and combined with theprojected gradient method for solving optimization problems on convex sets.This combi-nation includes the use of nonmonotone line search techniques to preserve the fast localconvergence.In this work we further extend the spectral choice of steplength to accept pre-conditioned directions when a good preconditioner is available.We present an algorithmthat combines the spectral projected gradient method with preconditioning strategies toincrease the local speed of convergence while keeping the global properties.We discussimplementation details for solving large-scale problems.  相似文献   

15.
We consider nonmonotone projected gradient methods based on non-Euclidean distances, which play the role of barrier for a given constraint set. Our basic scheme uses the resulting projection-like maps that produces interior trajectories, and combines it with the recent nonmonotone line search technique originally proposed for unconstrained problems by Zhang and Hager. The combination of these two ideas leads to produce a nonmonotone scheme for constrained nonconvex problems, which is proven to converge to a stationary point. Some variants of this algorithm that incorporate spectral steplength are also studied and compared with classical nonmonotone schemes based on the usual Euclidean projection. To validate our approach, we report on numerical results solving bound constrained problems from the CUTEr library collection.  相似文献   

16.
In this paper, a class of minimization problems over density matrices arising in the quantum state estimation is investigated. By making use of the Nesterov’s accelerated strategies, we introduce a modified augmented Lagrangian method to solve it, where the subproblem is tackled by the projected Barzilai–Borwein method with nonmonotone line search. Compared with the existing projected gradient method, several numerical examples are tested to show that the proposed method is efficient and promising.  相似文献   

17.
A fully derivative-free spectral residual method for solving large-scale nonlinear systems of equations is presented. It uses in a systematic way the residual vector as a search direction, a spectral steplength that produces a nonmonotone process and a globalization strategy that allows for this nonmonotone behavior. The global convergence analysis of the combined scheme is presented. An extensive set of numerical experiments that indicate that the new combination is competitive and frequently better than well-known Newton-Krylov methods for large-scale problems is also presented.

  相似文献   


18.
Adaptive Two-Point Stepsize Gradient Algorithm   总被引:7,自引:0,他引:7  
Combined with the nonmonotone line search, the two-point stepsize gradient method has successfully been applied for large-scale unconstrained optimization. However, the numerical performances of the algorithm heavily depend on M, one of the parameters in the nonmonotone line search, even for ill-conditioned problems. This paper proposes an adaptive nonmonotone line search. The two-point stepsize gradient method is shown to be globally convergent with this adaptive nonmonotone line search. Numerical results show that the adaptive nonmonotone line search is specially suitable for the two-point stepsize gradient method.  相似文献   

19.
The spectral gradient method is a nonmonotone gradient method for large-scale unconstrained minimization. We strengthen the algorithm by modifications which globalize the method and present strategies to apply preconditioning techniques. The modified algorithm replaces a condition of uniform positive definitness of the preconditioning matrices, with mild conditions on the search directions. The result is a robust algorithm which is effective on very large problems. Encouraging numerical experiments are presented for a variety of standard test problems, for solving nonlinear Poisson-type equations, an also for finding molecular conformations by distance geometry.  相似文献   

20.
In this paper, we introduce a class of nonmonotone conjugate gradient methods, which include the well-known Polak–Ribière method and Hestenes–Stiefel method as special cases. This class of nonmonotone conjugate gradient methods is proved to be globally convergent when it is applied to solve unconstrained optimization problems with convex objective functions. Numerical experiments show that the nonmonotone Polak–Ribière method and Hestenes–Stiefel method in this nonmonotone conjugate gradient class are competitive vis-à-vis their monotone counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号