首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper presents an a posteriori error analysis for the stationary Stokes–Darcy coupled problem approximated by finite element methods on anisotropic meshes in or 3. Korn's inequality for piecewise linear vector fields on anisotropic meshes is established and is applied to non‐conforming finite element method. Then the existence and uniqueness of the approximation solution are deduced for non‐conforming case. With the obtained finite element solutions, the error estimators are constructed and based on the residual of model equations plus the stabilization terms. The lower error bound is proved by means of bubble functions and the corresponding anisotropic inverse inequalities. In order to prove the upper error bound, it is vital that an anisotropic mesh corresponds to the anisotropic function under consideration. To measure this correspondence, a so‐called matching function is defined, and its discussion shows it to be useful tool. With its help, the upper error bound is shown by means of the corresponding anisotropic interpolation estimates and a special Helmholtz decomposition in both media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A new a posteriori L2 norm error estimator is proposed for thePoisson equation. The error estimator can be applied to anisotropictetrahedral or triangular finite element meshes. The estimatoris rigorously analysed for Dirichlet and Neumann boundary conditions. The lower error bound relies on specifically designed anisotropicbubble functions and the corresponding inverse inequalities.The upper error bound utilizes non-standard anisotropic interpolationestimates. Its proof requires H2 regularity of the Poisson problem,and its quality depends on how good the anisotropic mesh resolvesthe anisotropy of the problem. This is measured by a so-called‘matching function’. A numerical example supports the anisotropic error analysis.  相似文献   

3.
This paper presents a robust a posteriori residual error estimator for diffusion-convection-reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d=2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.  相似文献   

4.
Summary. Both for the - and -norms, we prove that, up to higher order perturbation terms, edge residuals yield global upper and local lower bounds on the error of linear finite element methods on anisotropic triangular or tetrahedral meshes. We also show that, with a correct scaling, edge residuals yield a robust error estimator for a singularly perturbed reaction-diffusion equation. Received April 19, 1999 / Published online April 20, 2000  相似文献   

5.
We consider a singularly perturbed reaction–diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.  相似文献   

6.
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.  相似文献   

7.
Summary. We consider a second-order elliptic equation with discontinuous or anisotropic coefficients in a bounded two- or three dimensional domain, and its finite-element discretization. The aim of this paper is to prove some a priori and a posteriori error estimates in an appropriate norm, which are independent of the variation of the coefficients. Received February 5, 1999 / Published online March 16, 2000  相似文献   

8.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

9.
Summary. The divergence stability of mixed hp Finite Element Methods for incompressible fluid flow is analyzed. A discrete inf-sup condition is proved for a general class of meshes. The meshes may be refined anisotropically, geometrically and may contain hanging nodes on geometric patches. The inf-sup constant is shown to be independent of the aspect ratio of the anisotropic elements and the dependence on the polynomial degree is analyzed. Numerical estimates of inf-sup constants confirm the theoretical results. Received October 13, 1997 / Revised version received June 8, 1998 / Published online July 28, 1999  相似文献   

10.
Directional, anisotropic features like layers in the solution of partial differential equations can be resolved favorably by using anisotropic finite element meshes. An adaptive algorithm for such meshes includes the ingredients Error estimation and Information extraction/Mesh refinement. Related articles on a posteriori error estimation on anisotropic meshes revealed that reliable error estimation requires an anisotropic mesh that is aligned with the anisotropic solution. To obtain anisotropic meshes the so‐called Hessian strategy is used, which provides information such as the stretching direction and stretching ratio of the anisotropic elements. This article combines the analysis of anisotropic information extraction/mesh refinement and error estimation (for several estimators). It shows that the Hessian strategy leads to well‐aligned anisotropic meshes and, consequently, reliable error estimation. The underlying heuristic assumptions are given in a stringent yet general form. Numerical examples strengthen the exposition. Hence the analysis provides further insight into a particular aspect of anisotropic error estimation. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 625–648, 2002; DOI 10.1002/num.10023  相似文献   

11.
Crouzeix-Raviart type finite elements on anisotropic meshes   总被引:47,自引:0,他引:47  
Summary. The paper deals with a non-conforming finite element method on a class of anisotropic meshes. The Crouzeix-Raviart element is used on triangles and tetrahedra. For rectangles and prismatic (pentahedral) elements a novel set of trial functions is proposed. Anisotropic local interpolation error estimates are derived for all these types of element and for functions from classical and weighted Sobolev spaces. The consistency error is estimated for a general differential equation under weak regularity assumptions. As a particular application, an example is investigated where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges. A numerical test is described. Received May 19, 1999 / Revised version received February 2, 2000 / Published online February 5, 2001  相似文献   

12.
The aim of this paper is to introduce residual type a posteriori error estimators for a Poisson problem with a Dirac delta source term, in L p norm and W1,p seminorm. The estimators are proved to yield global upper and local lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to lead to optimal orders of convergence.  相似文献   

13.
We consider some (anisotropic and piecewise constant) diffusion problems in domains of R2, approximated by a discontinuous Galerkin method with polynomials of any fixed degree. We propose an a posteriori error estimator based on gradient recovery by averaging. It is shown that this estimator gives rise to an upper bound where the constant is one up to some additional terms that guarantee reliability. The lower bound is also established. Moreover these additional terms are negligible when the recovered gradient is superconvergent. The reliability and efficiency of the proposed estimator is confirmed by some numerical tests.  相似文献   

14.
Summary This paper deals with the problem of obtaining numerical estimates of the accuracy of approximations to solutions of elliptic partial differential equations. It is shown that, by solving appropriate local residual type problems, one can obtain upper bounds on the error in the energy norm. Moreover, in the special case of adaptiveh-p finite element analysis, the estimator will also give a realistic estimate of the error. A key feature of this is the development of a systematic approach to the determination of boundary conditions for the local problems. The work extends and combines several existing methods to the case of fullh-p finite element approximation on possibly irregular meshes with, elements of non-uniform degree. As a special case, the analysis proves a conjecture made by Bank and Weiser [Some A Posteriori Error Estimators for Elliptic Partial Differential Equations, Math. Comput.44, 283–301 (1985)].  相似文献   

15.
We study approximation errors for the h-version of Nédélec edge elements on anisotropically refined meshes in polyhedra. Both tetrahedral and hexahedral elements are considered, and the emphasis is on obtaining optimal convergence rates in the H(curl) norm for higher order elements. Two types of estimates are presented: First, interpolation error estimates for functions in anisotropic weighted Sobolev spaces. Here we consider not only the H(curl)-conforming Nédélec elements, but also the H(div)-conforming Raviart-Thomas elements which appear naturally in the discrete version of the de Rham complex. Our technique is to transport error estimates from the reference element to the physical element via highly anisotropic coordinate transformations. Second, Galerkin error estimates for the standard H(curl) approximation of time harmonic Maxwell equations. Here we use the anisotropic weighted Sobolev regularity of the solution on domains with three-dimensional edges and corners. We also prove the discrete compactness property needed for the convergence of the Maxwell eigenvalue problem. Our results generalize those of [40] to the case of polyhedral corners and higher order elements.  相似文献   

16.
In this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf-sup constant is available, which is confirmed by some numerical results.  相似文献   

17.
The optimal design problem for maximal torsion stiffness of an infinite bar of given geometry and unknown distribution of two materials of prescribed amounts is one model example in topology optimisation. It eventually leads to a degenerate convex minimisation problem. The numerical analysis is therefore delicate for possibly multiple primal variables u but unique derivatives σ : = DW(D u). Even fine a posteriori error estimates still suffer from the reliability-efficiency gap. However, it motivates a simple edge-based adaptive mesh-refining algorithm (AFEM) that is not a priori guaranteed to refine everywhere. Its convergence proof is therefore based on energy estimates and some refined convexity control. Numerical experiments illustrate even nearly optimal convergence rates of the proposed AFEM. Supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.  相似文献   

18.
Summary. A residual-based a posteriori error estimate for boundary integral equations on surfaces is derived in this paper. A localisation argument involves a Lipschitz partition of unity such as nodal basis functions known from finite element methods. The abstract estimate does not use any property of the discrete solution, but simplifies for the Galerkin discretisation of Symm's integral equation if piecewise constants belong to the test space. The estimate suggests an isotropic adaptive algorithm for automatic mesh-refinement. An alternative motivation from a two-level error estimate is possible but then requires a saturation assumption. The efficiency of an anisotropic version is discussed and supported by numerical experiments. Received November 29, 1999 / Revised version received August 10, 2000 / Published online May 30, 2001  相似文献   

19.
The numerical approximation by a lower order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving singular perturbation problems. The quasi-optimal order error estimates are proved in the ε-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.  相似文献   

20.
In this paper, we propose a posteriori error estimators for certain quantities of interest for a first-order least-squares finite element method. In particular, we propose an a posteriori error estimator for when one is interested in where . Our a posteriori error estimators are obtained by assigning proper weight (in terms of local mesh size hT) to the terms of the least-squares functional. An a posteriori error analysis yields reliable and efficient estimates based on residuals. Numerical examples are presented to show the effectivity of our error estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号