首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The bilinear finite element methods on appropriately graded meshes are considered both for solving singular and semisingular perturbation problems. In each case, the quasi-optimal order error estimates are proved in the ε-weighted H1-norm uniformly in singular perturbation parameter ε, up to a logarithmic factor. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.  相似文献   

2.
3.
This paper concerns with the convergence analysis of a fourth-order singular perturbation of the Dirichlet Monge–Ampère problem in the n-dimensional radial symmetric case. A detailed study of the fourth- order problem is presented. In particular, various a priori estimates with explicit dependence on the perturbation parameter ε are derived, and a crucial convexity property is also proved for the solution of the fourth-order problem. Using these estimates and the convexity property, we prove that the solution of the perturbed problem converges uniformly and compactly to the unique convex viscosity solution of the Dirichlet Monge–Ampère problem. Rates of convergence in the Hk-norm for k = 0, 1, 2 are also established.  相似文献   

4.
The numerical approximation by a lower‐order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving semisingular perturbation problems. The quasi‐optimal‐order error estimates are proved in the ε‐weighted H1‐norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε‐weighted H1‐norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates.  相似文献   

6.
The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm.To this...  相似文献   

7.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

8.
In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations without heat conductivity, which is a hyperbolic-parabolic system. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant states is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure, velocity and magnetic field are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.  相似文献   

9.
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.  相似文献   

10.
A priori error estimates in the H1- and L2-norms are established for the finite element method applied to the exterior Helmholtz problem, with modified Dirichlet-to-Neumann (MDtN) boundary condition. The error estimates include the effect of truncation of the MDtN boundary condition as well as that of discretization of the finite element method. The error estimate in the L2-norm is sharper than that obtained by the author [D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math. 200 (1) (2007) 21-31] for the truncated DtN boundary condition.  相似文献   

11.
In this article, a coupling method of new mixed finite element (MFE) and finite element (FE) is proposed and analyzed for fourth-order parabolic partial differential equation. First, the fourth-order parabolic equation is split into the coupled system of second-order equations. Then, an equation is solved by finite element method, the other equation is approximated by the new mixed finite element method, whose flux belongs to the square integrable space replacing the classical H(div;Ω) space. The stability for fully discrete scheme is derived, and both semi-discrete and fully discrete error estimates are obtained. Moreover, the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term γ and a priori error estimate in (L 2)2-norm for its flux σ are derived. Finally, some numerical results are provided to validate our theoretical analysis.  相似文献   

12.
In the theory of anisotropic singular perturbation boundary value problems, the solution u ɛ does not converge, in the H 1-norm on the whole domain, towards some u 0. In this paper we construct correctors to have good approximations of u ɛ in the H 1-norm on the whole domain. Since the anisotropic singular perturbation problems can be connected to the study of the asymptotic behaviour of problems defined in cylindrical domains becoming unbounded in some directions, we transpose our results for such problems.  相似文献   

13.
Based on a linear finite element space, a symmetric finite volume scheme for a self-adjoint elliptic boundary-value problem is proposed. Error estimates in L2-norm, H1-norm, and L-norm are derived. Some post-processing techniques are also provided.  相似文献   

14.
Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order h1/2 in H1 × L2 norm for the velocity and pressure, and of order h in L2 norm for the velocity are derived. Those theoretical results are also verified by numerical examples.  相似文献   

15.
In this article we investigate the analysis of a finite element method for solving H(curl; ??)-elliptic interface problems in general three-dimensional polyhedral domains with smooth interfaces. The continuous problems are discretized by means of the first family of lowest order Nédélec H(curl; ??)-conforming finite elements on a family of tetrahedral meshes which resolve the smooth interface in the sense of sufficient approximation in terms of a parameter ?? that quantifies the mismatch between the smooth interface and the triangulation. Optimal error estimates in the H(curl; ??)-norm are obtained for the first time. The analysis is based on a ??-strip argument, a new extension theorem for H 1(curl; ??)-functions across smooth interfaces, a novel non-standard interface-aware interpolation operator, and a perturbation argument for degrees of freedom for H(curl; ??)-conforming finite elements. Numerical tests are presented to verify the theoretical predictions and confirm the optimal order convergence of the numerical solution.  相似文献   

16.
We analyze an immersed interface finite element method based on linear polynomials on noninterface triangular elements and piecewise linear polynomials on interface triangular elements. The flux jump condition is weakly enforced on the smooth interface. Optimal error estimates are derived in the broken H 1-norm and L 2-norm.  相似文献   

17.
We use the biquadratic elements to develop an alternating direction implicit (ADI) finite volume element method for second order hyperbolic problems in two spatial dimensions. The optimal H 1-norm error estimate of second order accuracy is proved. Numerical experiments that corroborate the theoretical analysis are also presented.  相似文献   

18.
EQ rot 1 nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2 ) one order higher than its interpolation error O(h), the superclose results of order O(h2 ) in broken H1 -norm are obtained. At the same time, the global superconvergence in broken H1 -norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4 ) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQ rot 1 element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.  相似文献   

19.
We present and analyze the modified method of characteristics (MMOC) and the modified method of characteristics with adjusted advection (MMOCAA) for the finite volume element (FVE) method of convection-diffusion problems. These two schemes maintain the advantages of both the MMOC and the FVE method. And the MMOCAA scheme discussed herein conserves the conservation law globally at a minor additional computational cost. Optimal-order error estimates in the H1-norm are proved for these schemes. A numerical example is presented to confirm the estimates.  相似文献   

20.
In this article, a nonconforming quadrilateral element(named modified quasiWilson element) is applied to solve the nonlinear schr¨odinger equation(NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(h~3) for broken H1-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover,the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号