首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
文章提出了周期边界条件下四阶特征值问题的一种有效的Fourier谱逼近方法.首先,根据周期边界条件引入了适当的Sobolev空间和相应的逼近空间,建立了原问题的一种弱形式及其离散格式,并推导了等价的算子形式.其次,定义了正交投影算子,并证明了其逼近性质,结合紧算子的谱理论证明了逼近特征值的误差估计.另外,构造了逼近空间中的一组基函数,推导了离散格式基于张量积的矩阵形式.最后,文章给出了一些数值算例,数值结果表明其算法是有效的和谱精度的.  相似文献   

2.
提出了一种有效计算多参数结构特征值与特征向量二阶灵敏度矩阵--Hessian矩阵的方法.将特征值和特征向量二阶摄动法转变为多参数形式,推导出二阶摄动灵敏度矩阵,由此得到特征值和特征向量的二阶估计式.该法解决了无法用直接求导法计算特征值和特征向量二阶灵敏度矩阵的问题.数值算例说明了该算法的应用和计算精度.  相似文献   

3.
本文提出球几何区域上Helmholtz传输特征值问题基于Legendre-Galerkin逼近的一种有效的谱方法.首先,通过球坐标变换和球调和函数展开,将原问题化为一系列等价的一维广义特征值问题.然后,针对每个一维广义特征值问题建立相应的弱形式和离散格式,并利用紧算子的谱理论证明特征值和特征函数的误差估计.特别地,对于实心的球形区域,需要克服由球坐标变换引入的极点奇性这一困难.因此,本文推导了相应的极条件,并根据极条件引入带权的Sobolev空间,从而建立了每个一维广义特征值问题相应的弱形式和离散格式.最后给出一些数值例子,数值结果表明算法的有效性和理论结果的正确性.  相似文献   

4.
曹阳  戴华 《计算数学》2014,36(4):381-392
本文研究求解非线性特征值问题的数值方法.基于矩阵值函数的二次近似,将非线性特征值问题转化为二次特征值问题,提出了求解非线性特征值问题的逐次二次近似方法,分析了该方法的收敛性.结合求解二次特征值问题的Arnoldi方法和Jacobi-Davidson方法,给出求解非线性特征值问题的一些二次近似方法.数值结果表明本文所给算法是有效的.  相似文献   

5.
本文将Laplace算子的Steklov特征值问题归化为一个边界变分问题,从而使原问题的空间维数降低了一维,基于此变分问题给出了Steklov特征值问题的边界元近似解,计算实例表明此方法是十分有效的。  相似文献   

6.
二次四元数系统XAX?BX=P是离散型Lyapunov方程正定解反问题的推广形式.本文在四元数体上讨论它的正定解存在性及迭代求解方法.利用等价二次方程的系数矩阵的极大极小特征值,获得其正定解的存在区间,并针对系数矩阵的不同情况构建出三种收敛的迭代格式.同时根据每种迭代的特点,给出了迭代初始矩阵的选取方法.最后通过四元数矩阵复算子实现Matlab环境下求解.数值算例验证了所给方法的有效及可行性.  相似文献   

7.
本文分别基于原始变分形式与对偶混合变分形式,对一类单边约束问题进行了数值求解,提出了求解离散对偶混合变分问题的Uzawa型算法,并用数值例子验证了算法的有效性.  相似文献   

8.
本文用分裂正定混合有限元方法研究二阶粘弹性方程. 首先构造一种新的分裂正定混合变分形式和基于这种分裂正定混合变分形式关于时间的半离散格式, 然后绕开关于空间变量的半离散化格式, 直接从时间半离散出发构造出全离散化的分裂正定混合有限元格式, 并给出这种分裂正定混合有限元解的误差估计. 这种研究思路使得理论论证变得更简单,这是处理二阶粘弹性方程的一种新的尝试.  相似文献   

9.
朱禹  陈芳 《计算数学》2022,44(3):368-378
利用隐式守恒型差分格式来离散空间分数阶非线性薛定谔方程,可得到一个离散线性方程组.该离散线性方程组的系数矩阵为一个纯虚数复标量矩阵、一个对角矩阵与一个对称Toeplitz矩阵之和.基于此,本文提出了用一种\textit{修正的埃尔米特和反埃尔米特分裂}(MHSS)型迭代方法来求解此离散线性方程组.理论分析表明,MHSS型迭代方法是无条件收敛的.数值实验也说明了该方法是可行且有效的.  相似文献   

10.
本文讨论在带有大钝角的多角形区域Ω上Laplace方程特征值问题的数值解。由于区域Ω有带大钝角的角点,在此角点上特征函数具有某种奇性,因此用通常的有限元方法求出的近似解精度很差。本文应用无限元方法克服了这个困难。办法是把Ω剖分为无限多个相似的三角形单元,将原问题离散化为一个无限维的矩阵束的特征值问题。本文给出了求解这一矩阵束特征值问题的近似方法。至于无限元近似解的误差估计,已在[11]中给出。  相似文献   

11.
This paper recognizes that in many decision environments in which revenue optimization is attempted, an actual demand curve and its parameters are generally unobservable. Herein, we describe the dynamics of demand as a continuous time differential equation based on an evolutionary game theory perspective. We then observe realized sales data to obtain estimates of parameters that govern the evolution of demand; these are refined on a discrete time scale. The resulting model takes the form of a differential variational inequality. We present an algorithm based on a gap function for the differential variational inequality and report its numerical performance for an example revenue optimization problem.  相似文献   

12.
In this paper, we consider the properties of monotonicity-preserving and global conservation-preserving for interpolation operators. These two properties play important role when interpolation operators used in many real numerical simulations. In order to attain these two aspects, we propose a one-dimensional (1D) new cubic spline, and extend it to two-dimensional (2D) using tensor-product operation. Based on discrete convolution, 1D and 2D quasi-interpolation operators are presented using these functions. Both analysis and numerical results show that the interpolation operators constructed in this paper are monotonic and conservative. In particular, we consider the numerical simulations of 2D Euler equations based on the technique of structured adaptive mesh refinement (SAMR). In SAMR simulations, effective interpolators are needed for information transportation between the coarser/finer meshes. We applied the 2D quasi-interpolation operator to this environment, and the simulation result show the efficiency and correctness of our interpolator.  相似文献   

13.
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton-Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.  相似文献   

14.
A class of nonlinear parabolic equation on a polygonal domain Ω  R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based on the partition of unity method. We give the construction and convergence analysis for the semi-discrete and the fully discrete finite element methods. Moreover, we prove that the error of the discrete variational problem has good approximation properties. Our results are valid for any spatial dimensions. A numerical example to illustrate the theoretical results is also given.  相似文献   

15.
We shed light on the relation between the discrete adjoints of multistep backward differentiation formula (BDF) methods and the solution of the adjoint differential equation. To this end, we develop a functional-analytic framework based on a constrained variational problem and introduce the notion of weak adjoint solutions of ordinary differential equations. We devise a Petrov-Galerkin finite element (FE) interpretation of the BDF method and its discrete adjoint scheme obtained by reverse internal numerical differentiation. We show how the FE approximation of the weak adjoint is computed by the discrete adjoint scheme and prove its convergence in the space of normalized functions of bounded variation. We also show convergence of the discrete adjoints to the classical adjoints on the inner time interval. Finally, we give numerical results for non-adaptive and fully adaptive BDF schemes. The presented framework opens the way to carry over techniques on global error estimation from FE methods to BDF methods.  相似文献   

16.
In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge–Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces to Lie groups. Because of their variational design, these integrators preserve a discrete momentum map (in the presence of symmetry) and a symplectic form. In a companion paper, we perform a numerical analysis of these methods and report on numerical experiments on the rigid body and chaotic dynamics of an underwater vehicle. The numerics reveal that these variational integrators possess structure-preserving properties that methods designed to preserve momentum (using the coadjoint action of the Lie group) and energy (for example, by projection) lack.  相似文献   

17.
We apply an expanded mixed finite element method, which introduces the gradient as a third explicit unknown, to solve a linear second-order elliptic equation in divergence form. Instead of using the standard dual form, we show that the corresponding variational formulation can be written as a dual–dual operator equation. We establish existence and uniqueness of solution for the continuous and discrete formulations, and provide the corresponding error analysis by using Raviart–Thomas elements. In addition, we show that the corresponding dual–dual linear system can be efficiently solved by a preconditioned minimum residual method. Some numerical results, illustrating this fact and the rate of convergence of the mixed finite element method, are also provided.  相似文献   

18.
In this work, we consider mathematical and numerical approaches to a dynamic contact problem with a highly nonlinear beam, the so-called Gao beam. Its left end is rigidly attached to a supporting device, whereas the other end is constrained to move between two perfectly rigid stops. Thus, the Signorini contact conditions are imposed to its right end and are interpreted as a pair of complementarity conditions. We formulate a time discretization based on a truncated variational formulation. We prove the convergence of numerical trajectories and also derive a new form of energy balance. A fully discrete numerical scheme is implemented to present numerical results.  相似文献   

19.
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian \(L:T^{(k)}Q\rightarrow {\mathbb {R}}\) with \(k\ge 1\), the resulting discrete equations define a generally implicit numerical integrator algorithm on \(T^{(k-1)}Q\times T^{(k-1)}Q\) that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian \(L_d^e\) using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of \(L_d^e\), we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号