首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate bounded traveling waves of the Burgers-Huxley equation, bifurcations of codimension 1 and 2 are discussed for its traveling wave system. By reduction to center manifolds and normal forms we give conditions for the appearance of homoclinic solutions, heteroclinic solutions and periodic solutions, which correspondingly give conditions of existence for solitary waves, kink waves and periodic waves, three basic types of bounded traveling waves. Furthermore, their evolutions are discussed to investigate the existence of other types of bounded traveling waves, such as the oscillatory traveling waves corresponding to connections between an equilibrium and a periodic orbit and the oscillatory kink waves corresponding to connections of saddle-focus.  相似文献   

2.
This paper is concerned with the traveling waves and entire solutions for a delayed nonlocal dispersal equation with convolution- type crossing-monostable nonlinearity. We first establish the existence of non-monotone traveling waves. By Ikehara’s Tauberian theorem, we further prove the asymptotic behavior of traveling waves, including monotone and non-monotone ones. Then, based on the obtained asymptotic behavior, the uniqueness of the traveling waves is proved. Finally, the entire solutions are considered. By introducing two auxiliary monostable equations and establishing some comparison arguments for the three equations, some new types of entire solutions are constructed via the traveling wavefronts and spatially independent solutions of the auxiliary equations.  相似文献   

3.
All weak traveling wave solutions of the Camassa-Holm equation are classified. We show that, in addition to smooth solutions, there are a multitude of traveling waves with singularities: peakons, cuspons, stumpons, and composite waves.  相似文献   

4.
The Benjamin-Bona-Mahony (BBM) equation represents the unidirectional propagation of nonlinear dispersive long waves, which has a clear physical background, and is a more suitable mathematical and physical equation than the KdV equation. Therefore, the research on the BBM equation is very important. In this article, we put forward an effective algorithm, the modified hyperbolic function expanding method, to build the solutions of the BBM equation. We, by utilizing the modified hyperbolic function expanding method, obtain the traveling wave solutions of the BBM equation. When the parameters are taken as special values, the solitary waves are also derived from the traveling waves. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The modified hyperbolic function expanding method is direct, concise, elementary and effective, and can be used for many other nonlinear partial differential equations.  相似文献   

5.
This Note investigates the properties of the traveling waves solutions of the nonlocal Fisher equation. The existence of such solutions has been proved recently in Berestycki et al. (2009) [3] but their asymptotic behavior was still unclear. We use here a new numerical approximation of these traveling waves which shows that some traveling waves connect the two homogeneous steady states 0 and 1, which is a striking fact since 0 is dynamically unstable and 1 is unstable in the sense of Turing.  相似文献   

6.
莫达隆  卢亮  郭秀凤 《数学杂志》2016,36(5):963-974
本文研究了small-aspect-ratio波方程和深水表面波可积发展方程的行波解问题.利用微分方程定性理论的方法,分析了行波系统的相图分支,获得了孤立波解的精确表达式.  相似文献   

7.
We present in this paper a generalised PC (GPC) equation which includes several known models. The corresponding traveling wave system is derived and we show that the homoclinic orbits of the traveling wave system correspond to the solitary waves of GPC equation, and the heteroclnic orbits correspond to the kink waves. Under some parameter conditions, the existence of above two types of orbits is demonstrated and the explicit expressions of the two solutions are worked out.  相似文献   

8.
Solitary and Periodic Solutions of Nonlinear Nonintegrable Equations   总被引:2,自引:0,他引:2  
The singular manifold method and partial fraction decomposition allow one to find some special solutions of nonintegrable partial differential equations (PDE) in the form of solitary waves, traveling wave fronts, and periodic pulse trains. The truncated Painlevé expansion is used to reduce a nonlinear PDE to a multilinear form. Some special solutions of the latter equation represent solitary waves and traveling wave fronts of the original PDE. The partial fraction decomposition is used to obtain a periodic wave train solution as an infinite superposition of the "corrected" solitary waves.  相似文献   

9.
This paper is concerned with the existence and non-existence of traveling wave solutions of reaction-diffusion-advection equation with boundary conditions of mixed type in unbounded cylinder. By constructing new supper-sub solutions and applying monotone iteration method, we obtain existence of traveling wave solutions with wave velocity bigger than the “minimal speed”. For wave velocity smaller than the “minimal speed”, we find that traveling waves of exponential decay do not exist. Finally, we apply our results to KPP type nonlinearity.  相似文献   

10.
By using the method of dynamical systems, for the nonlinear surface wind waves equation, which is given by Manna, we study its dynamical behavior to determine all exact explicit traveling wave solutions. To guarantee the existence of the aforementioned solutions, all parameter conditions are determined. Our procedure shows that the nonlinear surface wind waves equation has no peakon solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the bifurcation theory of dynamical system is applied to study the traveling waves of the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq (KP-Boussinesq) equation. By transforming the traveling wave system of the KP-Boussinesq equation into a dynamical system in $R^{3}$, we derive various parameter conditions which guarantee the existence of its bounded and unbounded orbits. Furthermore, by calculating complicated elliptic integrals along these orbits, we obtain exact expressions of all possible traveling wave solutions of the (3+1)-dimensional KP-Boussines equation.  相似文献   

12.
We consider two classes of singular solutions of the KdV equation: singular solutions of the Cauchy problem and singular traveling waves. In both cases, we establish sufficient conditions for their existence.  相似文献   

13.
14.
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction–diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of \(c\ge c^*\) for the degenerate reaction–diffusion equation without delay, where \(c^*>0\) is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay \(\tau >0\). Furthermore, we prove the global existence and uniqueness of \(C^{\alpha ,\beta }\)-solution to the time-delayed degenerate reaction–diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted \(L^1\)-space. The exponential convergence rate is also derived.  相似文献   

15.
16.
We address the existence of moving gap solitons (traveling localized solutions) in the Gross–Pitaevskii equation with a small periodic potential. Moving gap solitons are approximated by the explicit solutions of the coupled‐mode system. We show, however, that exponentially decaying traveling solutions of the Gross–Pitaevskii equation do not generally exist in the presence of a periodic potential due to bounded oscillatory tails ahead and behind the moving solitary waves. The oscillatory tails are not accounted in the coupled‐mode formalism and are estimated by using techniques of spatial dynamics and local center‐stable manifold reductions. Existence of bounded traveling solutions of the Gross–Pitaevskii equation with a single bump surrounded by oscillatory tails on a large interval of the spatial scale is proven by using these techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We study an integro-differential equation that describes the slow erosion of granular flow. The equation is a first order nonlinear conservation law where the flux function includes an integral term. We show that there exist unique traveling wave solutions that connect profiles with equilibrium slope at ±∞. Such traveling waves take very different forms from those in standard conservation laws. Furthermore, we prove that the traveling wave profiles are locally stable, i.e., solutions with monotone initial data approach the traveling waves asymptotically as t→+∞t+.  相似文献   

18.
The purpose of this paper is to study the linear stability of “viscous” roll waves. These are periodic continuous traveling waves solutions of viscous perturbations of inhomogeneous hyperbolic systems. We first study the scalar case for the Burgers equation and for an inhomogeneous hyperbolic equation. Then we analyze the stability of roll waves, solutions of the shallow water equations with a real viscosity. In both cases, we first analyze the Evans function and compute an asymptotic expansion in the low frequency regime. Under a strong spectral stability condition, we prove the linear stability of viscous roll waves, solutions of the Saint Venant equations, with pointwise estimates on the Green functions.  相似文献   

19.
In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa–Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon and cuspon solutions. One of the considered GCH equations supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. The second equation does not support singular traveling waves and the last one supports four-segmented, non-smooth M-wave solutions.Moreover, smooth traveling waves of the three GCH equations are considered. Here, we use a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of their traveling-wave equations, corresponding to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding GCH equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. We also show the traveling wave nature of these pulse and front solutions to the GCH NLPDEs.  相似文献   

20.
带色散项的Degasperis-Procesi方程的孤立尖波解   总被引:2,自引:0,他引:2  
用动力系统的定性分析理论研究了带有色散项的Degasperis-Procesi方程的孤立尖波解.在一定的参数条件下,利用Degasperis-Procesi方程对应行波系统的相图分支从两种不同方式给出了孤立尖波解的表达式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号