首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
For linear elastostatics, the Lagrange multiplier to couple the displacement (i.e., Dirichlet) condition is well known in mathematics community, but the Lagrange multiplier to couple the traction (i.e., Neumann) condition is popular for elasticity problems by the Trefftz method in engineering community, which is called the Hybrid Trefftz method (HTM). However, there has not been any analysis for these Lagrange multipliers to couple the traction condition so far. New error analysis of the HTM for elasticity problems is explored in this paper, to derive error bounds with the optimal convergence rates. Numerical experiments are reported to support this analysis. The error analysis of the HTM for linear elastostatics is the main aim of this paper. In this paper, the collocation Trefftz method (CTM) without a multiplier is also introduced, accompanied with error analysis. Numerical comparisons are made for HTM and CTM using fundamental solutions (FS) and particular solutions (PS). The error analysis and numerical computations show that the accuracy of the HTM is equivalent to that of the CTM, but the stability of the CTM is good. For elasticity and other complicated problems, the simplicity of algorithms and programming grants the CTM a remarkable advantage. More numerical comparisons show that using PS is more efficient than using FS in both HTM and CTM. However, since the optimal convergence rates are the most important criterion in evaluation of numerical methods, the global performance of the HTM is as good as that of the CTM. The comparisons of HTM and CTM using FS and PS are the next aim of this article. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

2.
This study explores the boundary methods for the two‐dimensional homogeneous Stokes equations and investigates the particular solutions (PS) satisfying the Stokes equations. Smooth solutions for the Stokes equations are provided by explicit fundamental solutions (FS) and PS in this study, and singular corner solutions are also provided from linear elastostatics given in Li et al. ([Eng. Anal. Bound. Elem. 34 (2009), 533‐648, 2009). A new singularity model with an interior crack is proposed and solved by the collocation Trefftz method (CTM). The proposed method achieves highly accurate solutions with the first leading coefficient having 10 significant digits. These solutions may be used as a benchmark for testing results obtained by other numerical methods. Error bounds are derived for the CTM solutions using the PS. For a general corner, the exponent νk in r can only be obtained by numerical solutions of a system of nonlinear algebraic equations. Therefore, the combined method using many FS plus a few singular solutions is inevitable in most applications. For singularity problems, combining a few singular solutions with the FS is an advanced topic and is successfully implemented in Lee et al. (Eng. Anal. Bound. Elem. 24 (2010), 632–654); however, combining a few singular solutions with the smooth PS fails to converge in the first leading coefficient. As a result, the aforementioned method is not applicable to the singularity problems addressed in this article. With the help of particular and singular solutions, the hybrid Trefftz method with Lagrange multipliers can be developed for the Stokes equations. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
The inverse Cauchy problem of Laplace equation is hard to solve numerically, since it is highly ill-posed in the Hadamard sense. With this in mind, we propose a natural regularization technique to overcome the difficulty. In the linear space of the Trefftz bases for solving the Laplace equation, we introduce a novel concept to construct the Trefftz energy bases used in the numerical solution for the inverse Cauchy problem of the Laplace equation in arbitrary star plane domain. The Trefftz energy bases not only satisfy the Laplace equation but also preserve the energy, whose performance is better than the original Trefftz bases. We test the new method by two numerical examples.  相似文献   

4.
By using the multiple-scale Trefftz method (MSTM) to solve the Cauchy problem of the Laplace equation in an arbitrary bounded domain, we may lose the accuracy several orders when the noise being imposed on the specified Cauchy data is quite large. In addition to the linear equations obtained from the MSTM, the fundamental solutions play as the test functions being inserted into a derived boundary integral equation. Therefore, after merely supplementing a few linear equations in the mixed-type method (MTM), which is a well organized combination of the Trefftz method and the method of fundamental solutions (MFS), we can improve the ill-conditioned behavior of the linear equations system and hence increase the accuracy of the solution for the Cauchy problem significantly, as explored by two numerical examples.  相似文献   

5.
According to a general theory of domain decomposition methods (DDM), recently proposed by Herrera, DDM may be classified into two broad categories: direct and indirect (or Trefftz‐Herrera methods). This article is devoted to formulate systematically indirect methods and apply them to differential equations in several dimensions. They have interest since they subsume some of the best‐known formulations of domain decomposition methods, such as those based on the application of Steklov‐Poincaré operators. Trefftz‐Herrera approach is based on a special kind of Green's formulas applicable to discontinuous functions, and one of their essential features is the use of weighting functions which yield information, about the sought solution, at the internal boundary of the domain decomposition exclusively. A special class of Sobolev spaces is introduced in which boundary value problems with prescribed jumps at the internal boundary are formulated. Green's formulas applicable in such Sobolev spaces, which contain discontinuous functions, are established and from them the general framework for indirect methods is derived. Guidelines for the construction of the special kind of test functions are then supplied and, as an illustration, the method is applied to elliptic problems in several dimensions. A nonstandard method of collocation is derived in this manner, which possesses significant advantages over more standard procedures. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 296–322, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10008  相似文献   

6.
This paper presents a new boundary-type scheme for a sensitivity analysis of the two-dimensional potential problem by using the Trefftz formulation.

Since the Trefftz method is the boundary-type solution procedure, input data generation is easier than the domain-type solution procedure. Moreover, the physical quantities are expressed by the regular equations, their sensitivities, which is derived from the direct differentiation of the original quantaties, are also regular. Therefore, they can be calculated more easily than the ordinary boundary element method using the singular boundary integral equation. The present schemes are applied to simple numerical examples in order to confirm the validity of the present formulation.  相似文献   


7.
Following the success of a study on the method of fundamental solutions using an image concept [13], we extend to solve the three-dimensional Laplace problems containing spherical boundaries by using the three approaches. The case of eccentric sphere for the Laplace problem is considered. The optimal locations for the source distribution to include the foci in the MFS are also examined by using the image concept in the 3D problems. Whether a free constant is required or not in the MFS is also studied. The error distribution is discussed after comparing with the analytical solution derived by using the bispherical coordinates. Besides, the relationship between the Trefftz bases and the singularity in the MFS for the three-dimensional Laplace problems is also addressed. It is found that one source of the MFS contains several interior and exterior Trefftz sets through a degenerate kernel. On the contrary, one single Trefftz base can be superimposed by some lumped sources in the MFS through an indirect BIEM. Based on this finding, the relationship between the fictitious boundary densities of the indirect BIEM and the singularity strength in the MFS can be constructed due to the fact that the MFS is a lumped version of an indirect BIEM.  相似文献   

8.
In this paper, we present a new method for solving 1D time dependent partial differential equations based on the Laplace transform (LT). As a result, the problem is converted into a stationary boundary value problem (BVP) which depends on the parameter of LT. The resulting BVP is solved by the polynomial Trefftz method (PTM), which can be regarded as a meshless method. In PTM, the source term is approximated by a truncated series of Chebyshev polynomials and the particular solution is obtained from a recursive procedure. Talbot’s method is employed for the numerical inversion of LT. The method is tested with the help of some numerical examples.  相似文献   

9.
A truly general and systematic theory of finite element methods (FEM) should be formulated using, as trial and test functions, piecewise‐defined functions that can be fully discontinuous across the internal boundary, which separates the elements from each other. Some of the most relevant work addressing such formulations is contained in the literature on discontinuous Galerkin (dG) methods and on Trefftz methods. However, the formulations of partial differential equations in discontinuous functions used in both of those fields are indirect approaches, which are based on the use of Lagrange multipliers and mixed methods, in the case of dG methods, and the frame, in the case of Trefftz method. This article addresses this problem from a different point of view and proposes a theory, formulated in discontinuous piecewise‐defined functions, which is direct and systematic, and furthermore it avoids the use of Lagrange multipliers or a frame, while mixed methods are incorporated as particular cases of more general results implied by the theory. When boundary value problems are formulated in discontinuous functions, well‐posed problems are boundary value problems with prescribed jumps (BVPJ), in which the boundary conditions are complemented by suitable jump conditions to be satisfied across the internal boundary of the domain‐partition. One result that is presented in this article shows that for elliptic equations of order 2m, with m ≥ 1, the problem of establishing conditions for existence of solution for the BVPJ reduces to that of the “standard boundary value problem,” without jumps, which has been extensively studied. Actually, this result is an illustration of a more general one that shows that the same happens for any differential equation, or system of such equations that is linear, independently of its type and with possibly discontinuous coefficients. This generality is achieved by means of an algebraic framework previously developed by the author and his collaborators. A fundamental ingredient of this algebraic formulation is a kind of Green's formulas that simplify many problems (some times referred to as Green‐Herrera formulas). An important practical implication of our approach is worth mentioning: “avoiding the introduction of the Lagrange multipliers, or the ‘frame’ in the case of Trefftz‐methods, significantly reduces the number of degrees of freedom to be dealt with.” © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

10.
The hybrid-conventional finite element method is applied to the analysis of quasi-static, gradient-dependent elastoplastic problems in solid mechanics. The stresses within the element domain and the displacements on the boundary are simultaneously and independently approximated using Trefftz constraints, which lead to boundary integrals. The plastic multipliers are conventionally approximated with regard to C0 continuity of the multiplier field of the gradient-dependent plasticity. The finite element formulation is derived using a Galerkin-weighted residual approach. The plastic boundary conditions are examined and plastic radiations are set to zero on the plastic boundaries. The effectiveness of the present method is demonstrated with three numerical applications.  相似文献   

11.
Domain decomposition methods (DDM) have received much attention in recent years. They constitute the most effective means of using parallel computing resources to model continuous systems. However, combining collocation procedures with domain decomposition methods presents complications that must be overcome in order to profit from the advantages of parallel computing. The present paper belongs to a line of research in which a theory that constitutes a general and systematic formulation of discontinuous Galerkin methods (dG) is being investigated. Based on it, a new method of collocation of general applicability, TH‐collocation, was recently introduced. For a broad class of symmetric and positive continuous systems, TH‐collocation yields symmetric and positive matrices. This clears the way for applying effectively DDM and parallel computing, in combination with collocation, to such systems. In this paper the general procedure is explained with some detail and then is applied to develop an effective method for processing elliptic equations of second order. This, by the way, overcomes the difficulties encountered in a previous Herrera and Pinder's article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

12.
对于双连通区域上的电磁波散射问题,通过位势理论将其转化为边界积分方程组问题,然后采用Nystrom法和配置法对其离散求解,针对不同形状的障碍散射体,给出远场模式的数值解.  相似文献   

13.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

14.
将摄动配置方法应用到含时薛定谔方程,在计算实现的基础上结合摄动配置的特征提出了一类新的数值积分方法,并给出了一个2级2阶和一个3级4阶的辛摄动配置方法对含时薛定谔方程的数值算例.为了检验新的数值积分方法,我们还给出了与两个辛摄动配置格式在理论上等价的辛龙格-库塔方法以及同阶的非辛方法的数值模拟.展示了一些数值结果,并给出了一些分析.  相似文献   

15.
In this paper, we propose a method for the numerical solution of self adjoint singularly perturbed third order boundary value problems in which the highest order derivative is multiplied by a small parameter $\varepsilon$. In this method, first we introduce the derivatives of two scale relations satisfied by the subdivision schemes. After that we use these derivatives to construct the subdivision collocation method for the numerical solution of singularly perturbed boundary value problems. Convergence of the subdivision collocation method is also discussed. Numerical examples are presented to illustrate the proposed method.  相似文献   

16.
The Sine-Gordon (SG) equations are very important in that they can accurately model many essential physical phenomena. In this paper, the Jacobi-Gauss-Lobatto collocation (JGL-C) and Generalized Lagrange Jacobi-Gauss-Lobatto collocation (GLJGL-C) methods are adopted and compared to simulate the (2 + 1)-dimensional nonlinear SG equations. In order to discretize the time variable t, the Crank-Nicolson method is employed. For the space variables, two numerical methods based on the aforementioned collocation methods are applied. Furthermore, error estimation for both methods is provided. The present numerical method is truly effective, free of integration and derivative, and easy to implement. The given examples and the results assert that the GLJGL-C method outperforms the JGL-C method in terms of computation speed. Also, the presented methods are very valid, effective, and reliable.  相似文献   

17.
Recently, Herrera presented a general theory of domain decomposition methods (DDM). This article is part of a line of research devoted to its further development and applications. According to it, DDM are classified into direct and indirect, which in turn can be subdivided into overlapping and nonoverlapping. Some articles dealing with general aspects of the theory and with indirect (Trefftz–Herrera) methods have been published. In the present article, a very general direct‐overlapping method, which subsumes Schwarz methods, is introduced. Also, this direct‐overlapping method is quite suitable for parallel implementation. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 495–517, 2001  相似文献   

18.
In this paper, a new collocation BEM for the Robin boundary value problem of the conductivity equation ▽(γ▽u) = 0 is discussed, where the 7 is a piecewise constant function. By the integral representation formula of the solution of the conductivity equation on the boundary and interface, the boundary integral equations are obtained. We discuss the properties of these integral equations and propose a collocation method for solving these boundary integral equations. Both the theoretical analysis and the error analysis are presented and a numerical example is given.  相似文献   

19.
We consider the numerical solution of certain elliptic boundary value problems in disks and annuli using the Trefftz collocation method. In particular we examine boundary value problems for the Laplace, Helmholtz, modified Helmholtz and biharmonic equations in such domains. It is shown that this approach leads to systems in which the matrices possess specific structures. By exploiting these structures we propose efficient algorithms for the solution of the systems. The proposed algorithms are applied to standard test problems.  相似文献   

20.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号