首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
数学   7篇
  2019年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
This paper studies a meshfree technique for the numerical solution of the two-dimensional reaction–diffusion Brusselator system along with Dirichlet and Neumann boundary conditions. Combination of collocation method using the radial basis functions (RBFs) with first order accurate forward difference approximation is employed for obtaining meshfree solution of the problem. Different types of RBFs are used for this purpose. The method is shown to converge to the only equilibrium point of the system. Performance of the proposed method is successfully tested in terms of various error norms. In the case of non-availability of exact solution, performance of the new method is compared with the results obtained from the existing methods [7] and [8]. The elementary stability analysis is established theoretically and is also supported by numerical results.  相似文献   
2.
In this paper we present two new numerically stable methods based on Haar and Legendre wavelets for one- and two-dimensional parabolic partial differential equations (PPDEs). This work is the extension of the earlier work ,  and  from one- and two-dimensional boundary-value problems to one- and two- dimensional PPDEs. Two generic numerical algorithms are derived in two phases. In the first stage a numerical algorithm is derived by using Haar wavelets and then in the second stage Haar wavelets are replaced by Legendre wavelets in quest for better accuracy. In the proposed methods the time derivative is approximated by first order forward difference operator and space derivatives are approximated using Haar (Legendre) wavelets. Improved accuracy is obtained in the form of wavelets decomposition. The solution in this process is first obtained on a coarse grid and then refined towards higher accuracy in the high resolution space. Accuracy wise performance of the Legendre wavelets collocation method (LWCM) is better than the Haar wavelets collocation method (HWCM) for problems having smooth initial data or having no shock phenomena in the solution space. If sharp transitions exists in the solution space or if there is a discontinuity between initial and boundary conditions, LWCM loses its accuracy in such cases, whereas HWCM produces a stable solution in such cases as well. Contrary to the existing methods, the accuracy of both HWCM and LWCM do not degrade in case of Neumann’s boundary conditions. A distinctive feature of the proposed methods is its simple applicability for a variety of boundary conditions. Performances of both HWCM and LWCM are compared with the most recent methods reported in the literature. Numerical tests affirm better accuracy of the proposed methods for a range of benchmark problems.  相似文献   
3.
This paper examines the numerical solution of the transient nonlinear coupled Burgers’ equations by a Local Radial Basis Functions Collocation Method (LRBFCM) for large values of Reynolds number (Re) up to 103. The LRBFCM belongs to a class of truly meshless methods which do not need any underlying mesh but works on a set of uniform or random nodes without any a priori node to node connectivity. The time discretization is performed in an explicit way and collocation with the multiquadric radial basis functions (RBFs) are used to interpolate diffusion-convection variable and its spatial derivatives on decomposed domains. Five nodded domains of influence are used in the local support. Adaptive upwind technique [1] and [54] is used for stabilization of the method for large Re in the case of mixed boundary conditions. Accuracy of the method is assessed as a function of time and space discretizations. The method is tested on two benchmark problems having Dirichlet and mixed boundary conditions. The numerical solution obtained from the LRBFCM for different value of Re is compared with analytical solution as well as other numerical methods [15], [47] and [49]. It is shown that the proposed method is efficient, accurate and stable for flow with reasonably high Reynolds numbers.  相似文献   
4.
In this paper, we present a meshfree technique for the numerical solution of the regularized long wave (RLW) equation. This approach is based on a global collocation method using the radial basis functions (RBFs). Different kinds of RBFs are used for this purpose. Accuracy of the new method is tested in terms of L2L2 and LL error norms. In case of non-availability of the exact solution, performance of the new method is compared with existing methods. Stability analysis of the method is established. Propagation of single and double solitary waves, wave undulation, and conservation properties of mass, energy and momentum of the RLW equation are discussed.  相似文献   
5.
Numerical Algorithms - A mixed-type formulation composed of Gauss-Laguerre quadrature and meshless collocation is presented for approximation of oscillatory integrals containing Hankel function of...  相似文献   
6.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   
7.
Numerical scheme based on quartic B-spline collocation method is designed for the numerical solution of modified regularized long wave (MRLW) equation. Unconditional stability is proved using Von-Neumann approach. Performance of the method is checked through numerical examples. Using error norms L2 and L and conservative properties of mass, momentum and energy, accuracy and efficiency of the new method is established through comparison with the existing techniques.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号