首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For solving singular integral equations of the first kind Erdogan proposed a method of Galerkin type, and convergence was proved by Linz. In this paper we consider equations of the second kind, and it is found that the method converges also in this case. However, stronger conditions than for the first kind equations must be imposed. The computational aspect of the convergence problem is also considered.  相似文献   

2.
A new approach is used to show that the solution for one class of systems of linear Fredholm integral equations of the third kind with multipoint singularities is equivalent to the solution of systems of linear Fredholm integral equations of the second kind with additional conditions. The existence, nonexistence, uniqueness, and nonuniqueness of solutions to systems of linear Fredholm integral equations of the third kind with multipoint singularities are analyzed.  相似文献   

3.
This paper is concerned with obtaining approximate numerical solutions of some classes of integral equations by using Bernstein polynomials as basis. The integral equations considered are Fredholm integral equations of second kind, a simple hypersingular integral equation and a hypersingular integral equation of second kind. The method is explained with illustrative examples. Also, the convergence of the method is established rigorously for each class of integral equations considered here.  相似文献   

4.
本文对于一类具非光滑核第二类Fredholm方程的Collocation解提出一种迭代─校正方法,使得在计算量增加很少的前提下,成倍提高逼近解精度,并将此方法用于平面多角域上边界积分方程,从而给出其相应微分方程逼近解的高精度算法。此方法还是一种自适应方法。  相似文献   

5.
In this paper, an algorithm based on the regularization and integral mean value methods, to handle the ill-posed multi-dimensional Fredholm equations, is introduced. The application of this algorithm is based on the transforming the first kind equation to a second kind equation by the regularization method. Then, by converting the first kind to a second kind, the integral mean value method is employed to handle the resulting Fredholm integral equations of the second kind. The efficiency of the approach will be shown by applying the procedure on some examples.  相似文献   

6.
The concept of (A 0,S)-stability for Volterra integral equations of the second kind will be extended to that of the first kind equations. We will show that stability polynomials for methods employing reducible quadrature rules, as applied to the first kind equations, can be trivially obtained from the results for the second kind equations.  相似文献   

7.
We study the question whether linear one-dimensional integro-differential equations with constant limits of integration (equations of Fredholm type) containing no free differential expression (equations of first kind) can be reduced to integral equations of first kind and to Fredholm integro-differential equations of second kind.Translated fromVychislitel'naya i Prikladnaya Matematika, Issue 71, 1990, pp. 20–27.  相似文献   

8.
1.IntroductionConsidertheequationwherek(s,t)=k(f)tandf(s)aregiven,uistheunknownsolution.SinceitisrelatedcloselytoWiener-Hopfequationsandisveryimportantinpractice,therearemanynumericalresultsaboutit(e.g.[1--11]).Itiswellknownthattheaccuracyoftheapproximati…  相似文献   

9.
The collocation method for the numerical solution of Fredholm integral equations of the second kind is applied, properly modified, to the numerical solution of Cauchy type singular integral equations of the first or the second kind but with constant coefficients. This direct method of numerical solution of Cauchy type singular integral equations is compared afterwards with the corresponding method resulting from applying the collocation method to the Fredholm integral equation of the second kind equivalent to the Cauchy type singular integral equation, as well as with another method, based also on the regularization procedure, for the numerical solution of the same class of equations. Finally, the convergence of the method is discussed.  相似文献   

10.
Based on a new approach, we show that finding solutions for a class of systems of linear (respectively, nonlinear) Fredholm integral equations of the third kind with multipoint singularities is equivalent to finding solutions of systems of linear (respectively, nonlinear) Fredholm integral equations of the second kind with additional conditions. We study the existence, nonexistence, uniqueness, and nonuniqueness of solutions for this class of systems of Fredholm integral equations of the third kind with multipoint singularities.  相似文献   

11.
Stable solutions of equations of the first kind and equations of the second kind at a characteristic value are given. Iterative processes for solutions are constructed. Extension of operators is used to turn an ill-posed problem into a well-posed one.  相似文献   

12.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

13.
洪志敏  闫在在 《数学杂志》2016,36(2):425-436
本文讨论了第一类、第二类以及具有奇异核的Volterra积分方程的数值解问题.利用重要抽样蒙特卡罗随机模拟方法获得积分方程解的近似计算结果.通过对文献中算例的实现表明文中所提方法扩展了Volterra型积分方程的数值求解方法,  相似文献   

14.
Under consideration are the functional equations of the first, second, and third kind with operators in wide classes of linear continuous operators in L 2 containing all integral operators. We propose methods for reducing these equations by linear invertible changes either to linear integral equations of the first kind with nuclear operators or to equivalent linear integral equations of the second kind with quasidegenerate Carleman kernels. Some various approximate methods of solution are applicable to the so-obtained integral equations.  相似文献   

15.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

16.
In this paper we consider a class of Fredholm integral equations of the first kind which arise in a large number of problems in applied mathematics. Although only certain special cases of the equations can be solved exactly, it is shown that a constructive method can be developed for reformulating the equations as Fredholm integral equations of the second kind. This approach will be seen to cover and bring together the large number of isolated cases of the equations which have appeared in the literature. Several examples are given to illustrate the general method.  相似文献   

17.
This paper fills an important gap in the convergence analysis of collocation solutions in spaces of continuous piecewise polynomials for Volterra integral equations of the second kind. Our analysis is then extended to Volterra functional integral equations of the second kind with constant delays.  相似文献   

18.
Two techniques for using Gregory's method to solve Fredholm integral equations of the second kind are described. Since the kernel function is allowed to be mildly discontinuous, Volterra integral equations of the second kind can be solved in the same manner. Some numerical examples are given.  相似文献   

19.
We consider linear functional equations of the third kind in L 2 with arbitrary measurable coefficients and unbounded integral operators with kernels satisfying broad conditions. We propose methods for reducing these equations by linear continuous invertible transformations either to equivalent integral equations of the first kind with nuclear operators or to equivalent integral equations of the second kind with quasidegenerate Carleman kernels. To the integral equations obtained after the reduction, one can apply various exact and approximate methods of solution; in particular, the two approximate methods developed in this article.  相似文献   

20.
Summary An existence and uniqueness result is given for nonlinear Volterra integral equations of the first kind. This permits, by means of analogous discrete manipulations, a general convergence analysis for a wide class of discretization methods for nonlinear first kind Volterra integral equations to be presented. A concept of optimal consistency allows twosided error bounds to be derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号