首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析。首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式。数值算例证明了该方法的精度和效果。  相似文献   

2.
本文研究了带有初始奇异性的多项时间分数阶扩散方程的一种全离散数值方法.首先,基于L1公式在渐变网格下离散多项Caputo时间分数阶导数,构造了多项时间分数阶扩散方程的时间半离散格式,证明了时间格式通过选取合适的网格参数r,时间方向的误差可以达到最优的收敛阶2-α_1,其中α_1(0 α_11)为多项时间分数阶导数阶数的最大值.然后,空间采用谱方法进行离散,得到了全离散格式,证明了全离散格式的无条件稳定性和收敛性.为了降低计算量和储存量,对多项时间分数阶扩散方程又构造了时间方向的快速算法,同时证明了该格式的收敛性.数值算例验证了算法的有效性,显示了快速算法的高效性.  相似文献   

3.
分数阶Langevin方程有重要的科学意义和工程应用价值,基于经典block-by-block算法,求解了一类含有Caputo导数的分数阶Langevin方程的数值解.Block-by-block算法通过引入二次Lagrange基函数插值,构造出逐块收敛的非线性方程组,通过在每一块耦合求得分数阶Langevin方程的数值解.在0<α<1条件下,应用随机Taylor展开证明block-by-block算法是3+α阶收敛的,数值试验表明在不同α和时间步长h取值下,block-by-block算法具有稳定性和收敛性,克服了现有方法求解分数阶Langevin方程速度慢精度低的缺点,表明block-by-block算法求解分数阶Langevin方程是高效的.  相似文献   

4.
基于分数阶微积分基本定理和三次B样条理论,构造了求解线性Caputo-Fabrizio型分数阶微分方程数值解的三次B样条方法,利用分数阶微积分基本定理将初值问题转化为关于解函数的表达式,再使用三次B样条函数逼近表达式中积分项的被积函数,进而计算了一类Caputo-Fabrizio型分数阶微分方程的数值解.给出了所构造的三次B样条方法的误差估计、收敛性和稳定性的理论证明.数值实验表明,该文数值方法在求解一类Caputo-Fabrizio型分数阶微分方程数值解时具有一定的可行性和有效性,且计算精度和计算效率优于现有的两种数值方法.  相似文献   

5.
本文用隐式中点方法离散一阶时间偏导数,并用拟紧差分算子逼近Riemann-Liouville空间分数阶偏导数,构造了求解带非线性源项的空间分数阶扩散方程的数值格式.给出了数值方法的稳定性和收敛性分析.数值试验表明数值方法是有效的.  相似文献   

6.
时间延迟扩散-波动分数阶微分方程有限差分方法   总被引:1,自引:0,他引:1  
本文提出求解时间延迟扩散-波动分数阶微分方程有限差分方法,方程中对时间的一阶导函数用α阶(0 < α < 1) Caputo分数阶导数代替.文章中利用Lubich线性多步法对分数阶微分进行差分离散,且文章利用分段区间证明该方法是稳定的,且利用数值实验加以验证.  相似文献   

7.
研究带Caputo分数阶导数的变系数对流扩散方程的数值解法.基于Chebyshev cardinal函数,推导Riemann-Liouville分数阶积分的一个有效算子矩阵,以之为基础,提出了变系数分数阶对流扩散方程的一种新的算子矩阵法.该方法将方程的求解转化成矩阵的代数运算,具有计算量小和易于编程等特点.给出数值算例并与一些现有的方法进行比较,结果表明该方法是收敛的且在计算精度上占有优势.  相似文献   

8.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

9.
王金凤  尹保利  刘洋  李宏 《计算数学》2022,44(4):496-507
本文研究四阶分数阶扩散波动方程模型的基于新混合元方法的快速两网格算法.讨论该方法的稳定性,推导三个未知函数的$L^2$模意义下的最优误差估计.最后通过数值例子验证两网格混合元算法的高效性和理论结果的正确性.  相似文献   

10.
胡行华  秦艳杰 《计算数学》2023,45(1):109-129
本文基于现有的切比雪夫神经网络,提出了一种利用遗传算法优化切比雪夫神经网络求解分数阶Bagley-Torvik方程数值解的新方法,结合多点处的泰勒公式原理,给出数值解的一般形式,将原问题转化为求解无约束最小化问题.与现有数值方法的数值结果进行比较表明了本文方法的可行性和有效性,为分数阶微分方程中类似问题的求解提供了新的思路.  相似文献   

11.
The heat equation is parabolic partial differential equation and occurs in the characterization of diffusion progress. In the present work, a new fractional operator based on the Rabotnov fractional-exponential kernel is considered. Next, we conferred some fascinating and original properties of nominated new fractional derivative with some integral transform operators where all results are significant. The fundamental target of the proposed work is to solve the multidimensional heat equations of arbitrary order by using analytical approach homotopy perturbation transform method and residual power series method, where new fractional operator has been taken in new Yang-Abdel-Aty-Cattani (YAC) sense. The obtained results indicate that solution converges to the original solution in language of generalized Mittag-Leffler function. Three numerical examples are discussed to draw an effective attention to reveal the proficiency and adaptability of the recommended methods on new YAC operator.  相似文献   

12.
In this paper, we apply the dual reciprocity boundary elements method for the numerical solution of two‐dimensional linear and nonlinear time‐fractional modified anomalous subdiffusion equations and time‐fractional convection–diffusion equation. The fractional derivative of problems is described in the Riemann–Liouville and Caputo senses. We employ the linear radial basis function for interpolation of the nonlinear, inhomogeneous and time derivative terms. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity which appears in the nonlinear problems under consideration. The accuracy and efficiency of the proposed schemes are checked by five test problems. The proposed method is employed for solving some examples in two dimensions on unit square and also in complex regions to demonstrate the efficiency of the new technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
By the rapid growth of available data, providing data-driven solutions for nonlinear (fractional) dynamical systems becomes more important than before. In this paper, a new fractional neural network model that uses fractional order of Jacobi functions as its activation functions for one of the hidden layers is proposed to approximate the solution of fractional differential equations and fractional partial differential equations arising from mathematical modeling of cognitive-decision-making processes and several other scientific subjects. This neural network uses roots of Jacobi polynomials as the training dataset, and the Levenberg-Marquardt algorithm is chosen as the optimizer. The linear and nonlinear fractional dynamics are considered as test examples showing the effectiveness and applicability of the proposed neural network. The numerical results are compared with the obtained results of some other networks and numerical approaches such as meshless methods. Numerical experiments are presented confirming that the proposed model is accurate, fast, and feasible.  相似文献   

14.
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α? (0,1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.  相似文献   

15.
Two‐dimensional time‐fractional diffusion equations with given initial condition and homogeneous Dirichlet boundary conditions in a bounded domain are considered. A semidiscrete approximation scheme based on the pseudospectral method to the time‐fractional diffusion equation leads to a system of ordinary fractional differential equations. To preserve the high accuracy of the spectral approximation, an approach based on the evaluation of the Mittag‐Leffler function on matrix arguments is used for the integration along the time variable. Some examples along with numerical experiments illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, numerical solutions of fractional Fokker–Planck equations with Riesz space fractional derivatives have been developed. Here, the fractional Fokker–Planck equations have been considered in a finite domain. In order to deal with the Riesz fractional derivative operator, shifted Grünwald approximation and fractional centred difference approaches have been used. The explicit finite difference method and Crank–Nicolson implicit method have been applied to obtain the numerical solutions of fractional diffusion equation and fractional Fokker–Planck equations, respectively. Numerical results are presented to demonstrate the accuracy and effectiveness of the proposed numerical solution techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
First we introduce and analyze a convergent numerical method for a large class of nonlinear nonlocal possibly degenerate convection diffusion equations. Secondly we develop a new Kuznetsov type theory and obtain general and possibly optimal error estimates for our numerical methods—even when the principal derivatives have any fractional order between 1 and 2! The class of equations we consider includes equations with nonlinear and possibly degenerate fractional or general Levy diffusion. Special cases are conservation laws, fractional conservation laws, certain fractional porous medium equations, and new strongly degenerate equations.  相似文献   

18.
The numerical technique based on two-dimensional block pulse functions(2D-BPFs) is proposed for solving the time fractional convection diffusion equations with variable coeficients(FCDEs).We introduce the block pulse operational matrices of the fractional order differentiation.Furthermore,we translate the original equation into a Sylvester equation by the proposed method.Finally,some numerical examples are given and numerical results are shown to demonstrate the accuracy and reliability of the above-mentioned algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号