首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. IntroductionArnoldi's method [1, 12] is used for computing.,a few selected eigenpairs of largeunsymmetric matrices. It hajs been investigated since the 1980s; see, e-g., [3--15].It is well known that the m--step Arnoldi processt as described in detail in Section 2,generates an orthonormal basis {yi}7=1 of the Krylov subspace Km(vi, A) spanned byvil Avi,... 5 Am--'v,. Here yi is an initial unit norm vector. The projected matrix ofA onto Km(vi, A) is represented by an m x m upper Hessenb…  相似文献   

2.
When the matrix in question is unsymmetric, the approximate eigenvectors or Ritz vectors obtained by orthogonal projection methods including Arnoldi's method and the block Arnoldi method cannot be guaranteed to converge in theory even if the corresponding approximate eigenvalues or Ritz values do. In order to circumvent this danger, a new strategy has been proposed by the author for Arnoldi's method. The strategy used is generalized to the block Arnoldi method in this paper. It discards Ritz vectors and instead computes refined approximate eigenvectors by small-sized singular-value decompositions. It is proved that the new strategy can guarantee the convergence of refined approximate eigenvectors if the corresponding Ritz values do. The resulting refined iterative algorithm is realized by the block Arnoldi process. Numerical experiments show that the refined algorithm is much more efficient than the iterative block Arnoldi algorithm.  相似文献   

3.
陈桂芝  梁娟 《数学研究》2006,39(3):266-270
讨论求解大规模非对称矩阵内部特征问题的一种方法,与标准的调和A rnold i方法相比,该方法仍用调和R itz值作为特征值的近似,而在近似特征向量选取方面,我们充分利用A rnold i过程所提供的最末一个基向量的信息,在多1维K ry lov子空间中选取一个向量-称之为改进的调和R itz向量-作为所求的特征向量的近似.理论分析和数值试验均表明这种变形的调和A rnold i方法的可行性和有效性.  相似文献   

4.
We extend the Rayleigh-Ritz method to the eigen-problem of periodic matrix pairs. Assuming that the deviations of the desired periodic eigenvectors from the corresponding periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectors may fail to converge. To overcome this potential problem, we minimize residuals formed with periodic Ritz values to produce the refined periodic Ritz vectors, which converge under the same assumption. These results generalize the corresponding well-known ones for Rayleigh-Ritz approximations and their refinement for non-periodic eigen-problems. In addition, we consider a periodic Arnoldi process which is particularly efficient when coupled with the Rayleigh-Ritz method with refinement. The numerical results illustrate that the refinement procedure produces excellent approximations to the original periodic eigenvectors.  相似文献   

5.
Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error bounds for Ritz elements are established. Compared with generalized Lanczos methods, which contain Arnoldi's method, the convergence analysis shows that the block versions have two advantages: First, they may be efficient for computing clustered eigenvalues; second, they are able to solve multiple eigenproblems. However, a deep analysis exposes that the approximate eigenvectors or Ritz vectors obtained by general orthogonal projection methods including generalized block methods may fail to converge theoretically for a general unsymmetric matrix A even if corresponding approximate eigenvalues or Ritz values do, since the convergence of Ritz vectors needs more sufficient conditions, which may be impossible to satisfy theoretically, than that of Ritz values does. The issues of how to restart and to solve multiple eigenproblems are addressed, and some numerical examples are reported to confirm the theoretical analysis. Received July 7, 1994 / Revised version received March 1, 1997  相似文献   

6.
The harmonic block Arnoldi method can be used to find interior eigenpairs of large matrices. Given a target point or shift ττ to which the needed interior eigenvalues are close, the desired interior eigenpairs are the eigenvalues nearest ττ and the associated eigenvectors. However, it has been shown that the harmonic Ritz vectors may converge erratically and even may fail to do so. To do a better job, a modified harmonic block Arnoldi method is coined that replaces the harmonic Ritz vectors by some modified harmonic Ritz vectors. The relationships between the modified harmonic block Arnoldi method and the original one are analyzed. Moreover, how to adaptively adjust shifts during iterations so as to improve convergence is also discussed. Numerical results on the efficiency of the new algorithm are reported.  相似文献   

7.
The two-sided Lanczos method is popular for computing a few selected eigentriplets of large non-Hermitian matrices. However, it has been revealed that theRitz vectors gained by this method may not converge even if the subspaces are good enough and the associated eigenvalues converge. In order to remedy this drawback, a novel method is proposed which is based on the refined strategy, the quasi-refined ideaand the Lanczos biothogonalization procedure, the resulting algorithm is presented. Therelationship between the new method and the classical oblique projection technique isalso established. We report some numericalwith the conventional one, the results showthe latter.experiments and compare the new algorithmthat the former is often more powerful than  相似文献   

8.
解大型非对称特征问题的精化块不完全正交化算法   总被引:1,自引:0,他引:1  
0引言 块Arnoldi方法~[5]是解大型非对称特征值问题的正交投影方法,然而Jia~[3]的分析表  相似文献   

9.
We combine Lanczos algorithm with the thought of the refined projection method using QR factorization and propose the refined biothogonalization Lanczos method for computing the desired eigenvalues of large unsymmetric matrix. With low cost of work space and flops the algorithm cures the disease that the Ritz vectors may not converge when the Ritz values converge usingthe Lanczos method. Numerical experiments show our algorithm is considerably more stable and efficient than its counterpart.  相似文献   

10.
求解大规模Hamilton矩阵特征问题的辛Lanczos算法的误差分析   总被引:2,自引:0,他引:2  
对求解大规模稀疏Hamilton矩阵特征问题的辛Lanczos算法给出了舍入误差分析.分析表明辛Lanczos算法在无中断时,保Hamilton结构的限制没有破坏非对称Lanczos算法的本质特性.本文还讨论了辛Lanczos算法计算出的辛Lanczos向量的J一正交性的损失与Ritz值收敛的关系.结论正如所料,当某些Ritz值开始收敛时.计算出的辛Lanczos向量的J-正交性损失是必然的.以上结果对辛Lanczos算法的改进具有理论指导意义.  相似文献   

11.
A rounding error analysis for the symplectic Lanczos method is given to solve the large-scale sparse Hamiltonian eigenvalue problem. If no breakdown occurs in the method, then it can be shown that the Hamiltonian structure preserving requirement does not destroy the essential feature of the nonsymmetric Lanczos algorithm. The relationship between the loss of J-orthogonality among the symplectic Lanczos vectors and the convergence of the Ritz values in the symmetric Lanczos algorithm is discussed. It is demonstrated that under certain assumptions the computed J-orthogonal Lanczos vectors lose the J-orthogonality when some Ritz values begin to converge. Our analysis closely follows the recent works of Bai and Fabbender. Selected from Journal of Mathematical Research and Exposition, 2004, 24(1): 91–106  相似文献   

12.
Very recently, an algorithm, which reduces any symmetric matrix into a semiseparable one of semi‐ separability rank 1 by similar orthogonality transformations, has been proposed by Vandebril, Van Barel and Mastronardi. Partial execution of this algorithm computes a semiseparable matrix whose eigenvalues are the Ritz‐values obtained by the Lanczos' process applied to the original matrix. Also a kind of nested subspace iteration is performed at each step. In this paper, we generalize the above results and propose an algorithm to reduce any symmetric matrix into a similar block‐semiseparable one of semiseparability rank k, with k ∈ ?, by orthogonal similarity transformations. Also in this case partial execution of the algorithm computes a block‐semiseparable matrix whose eigenvalues are the Ritz‐values obtained by the block‐Lanczos' process with k starting vectors, applied to the original matrix. Subspace iteration is performed at each step as well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for solving such problems. In this study, from the analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we conclude that the Rayleigh–Ritz-type of the contour integral spectral projection method is mathematically equivalent to the Arnoldi method with the projected vectors obtained from the contour integration. By this Arnoldi-based interpretation, we then propose a block Arnoldi-type contour integral spectral projection method for solving the eigenvalue problem.  相似文献   

14.
贾仲孝  张萍 《计算数学》2003,25(3):293-304
1.引言 在科学工程计算中经常需要计算大规模矩阵的少数最大或最小的奇异值及其所对应的奇异子空间。例如图像处理中要计算矩阵端部奇异值之比作为图像的分辨率,诸如此类的问题还存在于最小二乘问题、控制理论、量子化学中等等。然而大多实际问题中的矩阵是大型稀疏矩阵,且需要的是矩阵的部分奇异对。如果计算A的完全奇异值分解(SVD),则运算量和存储量极大,甚至不可能。因此必须寻求其它有效可靠的算法。 假设A的SVD为  相似文献   

15.
1. IntroductionWe are concerned in this work with finding a few extreme eigenvalues and theircorresponding eigenvectors of a generalized large scale eigenvalue problem in which thematrices are sparse and symmetric positive definite.Although finding a few extreme eigenpairs is of interest both in theory and practice,there are only few usable and efficient methods up to now. Reinsch and Baner ([12]),suggested a oR algorithm with Newton shift for the standard eigenproblem which included an ingen…  相似文献   

16.
The incomplete orthogonalization method (IOM) proposed by Saad for computing a few eigenpairs of large nonsymmetric matrices is generalized into a block incomplete orthogonalization method (BIOM). It is studied how the departure from symmetry A – A H affects the conditioning of the block basis vectors generated by BIOM, and some relationships are established between the approximate eigenpairs obtained by BIOM and Ritz pairs. It is proved that BIOM behaves much like generalized block Lanczos methods if the basis vectors of the block Krylov subspace generated by it are strongly linearly independent. However, it is shown that BIOM may generate a nearly linearly dependent basis for a general nonsymmetric matrix. Numerical experiments illustrate the convergence behavior of BIOM.This work was supported in part by the Graduiertenkolleg at the University of Bielefeld, Germany.  相似文献   

17.
On Restarting the Arnoldi Method for Large Nonsymmetric Eigenvalue Problems   总被引:6,自引:0,他引:6  
The Arnoldi method computes eigenvalues of large nonsymmetric matrices. Restarting is generally needed to reduce storage requirements and orthogonalization costs. However, restarting slows down the convergence and makes the choice of the new starting vector difficult if several eigenvalues are desired. We analyze several approaches to restarting and show why Sorensen's implicit QR approach is generally far superior to the others. Ritz vectors are combined in precisely the right way for an effective new starting vector. Also, a new method for restarting Arnoldi is presented. It is mathematically equivalent to the Sorensen approach but has additional uses.

  相似文献   


18.
Stewart’s Krylov–Schur algorithm offers two advantages over Sorensen’s implicitly restarted Arnoldi (IRA) algorithm. The first is ease of deflation of converged Ritz vectors, the second is the avoidance of the potential forward instability of the QR algorithm. In this paper we develop a block version of the Krylov–Schur algorithm for symmetric eigenproblems. Details of this block algorithm are discussed, including how to handle rank deficient cases and how to use varying block sizes. Numerical results on the efficiency of the block Krylov–Schur method are reported.  相似文献   

19.
We consider the problem of computing PageRank. The matrix involved is large and cannot be factored, and hence techniques based on matrix-vector products must be applied. A variant of the restarted refined Arnoldi method is proposed, which does not involve Ritz value computations. Numerical examples illustrate the performance and convergence behavior of the algorithm. AMS subject classification (2000) 65F15, 65C40  相似文献   

20.
In this paper, we develop an implicitly restarted block Arnoldi algorithm in a vector-wise fashion. The vector-wise construction greatly simplifies both the detection of necessary deflation and the actual deflation itself, so it is preferable to the block-wise construction. The numerical experiment shows that our algorithm is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号