首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
1.IntroductionLarge-scalematrixeigenproblemsariseinappliedsciencesandmanyengineeringapplications.Arnoldi'smethod[1'2]anditsblockversion[3--6]areverypopularforsolvingthem.Thesemethodshavebeenintensivelyinvestigatedsincethe1980s,bothintheoryandinalgorithms;wereferto[7--17]fordetails.WhenmstepsoftheblockArnoldiprocessareperformed,anorthonormalbasis{K}7=1oftheblockKrylovsubspaceK.(VI,A)spannedbyVI5AVI,'IAm--1VIisgenerated,whereVIisaninitialNxporthogonalmatrix,andtherestrictionofAtoKm(V…  相似文献   

2.
陈桂芝  梁娟 《数学研究》2006,39(3):266-270
讨论求解大规模非对称矩阵内部特征问题的一种方法,与标准的调和A rnold i方法相比,该方法仍用调和R itz值作为特征值的近似,而在近似特征向量选取方面,我们充分利用A rnold i过程所提供的最末一个基向量的信息,在多1维K ry lov子空间中选取一个向量-称之为改进的调和R itz向量-作为所求的特征向量的近似.理论分析和数值试验均表明这种变形的调和A rnold i方法的可行性和有效性.  相似文献   

3.
When the matrix in question is unsymmetric, the approximate eigenvectors or Ritz vectors obtained by orthogonal projection methods including Arnoldi's method and the block Arnoldi method cannot be guaranteed to converge in theory even if the corresponding approximate eigenvalues or Ritz values do. In order to circumvent this danger, a new strategy has been proposed by the author for Arnoldi's method. The strategy used is generalized to the block Arnoldi method in this paper. It discards Ritz vectors and instead computes refined approximate eigenvectors by small-sized singular-value decompositions. It is proved that the new strategy can guarantee the convergence of refined approximate eigenvectors if the corresponding Ritz values do. The resulting refined iterative algorithm is realized by the block Arnoldi process. Numerical experiments show that the refined algorithm is much more efficient than the iterative block Arnoldi algorithm.  相似文献   

4.
Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error bounds for Ritz elements are established. Compared with generalized Lanczos methods, which contain Arnoldi's method, the convergence analysis shows that the block versions have two advantages: First, they may be efficient for computing clustered eigenvalues; second, they are able to solve multiple eigenproblems. However, a deep analysis exposes that the approximate eigenvectors or Ritz vectors obtained by general orthogonal projection methods including generalized block methods may fail to converge theoretically for a general unsymmetric matrix A even if corresponding approximate eigenvalues or Ritz values do, since the convergence of Ritz vectors needs more sufficient conditions, which may be impossible to satisfy theoretically, than that of Ritz values does. The issues of how to restart and to solve multiple eigenproblems are addressed, and some numerical examples are reported to confirm the theoretical analysis. Received July 7, 1994 / Revised version received March 1, 1997  相似文献   

5.
Stewart’s Krylov–Schur algorithm offers two advantages over Sorensen’s implicitly restarted Arnoldi (IRA) algorithm. The first is ease of deflation of converged Ritz vectors, the second is the avoidance of the potential forward instability of the QR algorithm. In this paper we develop a block version of the Krylov–Schur algorithm for symmetric eigenproblems. Details of this block algorithm are discussed, including how to handle rank deficient cases and how to use varying block sizes. Numerical results on the efficiency of the block Krylov–Schur method are reported.  相似文献   

6.
The restarted FOM method presented by Simoncini[7]according to the natural collinearity of all residuals is an efficient method for solving shifted systems,which generates the same Krylov subspace when the shifts are handled simultaneously.However,restarting slows down the convergence.We present a practical method for solving the shifted systems by adding some Ritz vectors into the Krylov subspace to form an augmented Krylov subspace. Numerical experiments illustrate that the augmented FOM approach(restarted version)can converge more quickly than the restarted FOM method.  相似文献   

7.
In the present paper, we present numerical methods for the computation of approximate solutions to large continuous-time and discrete-time algebraic Riccati equations. The proposed methods are projection methods onto block Krylov subspaces. We use the block Arnoldi process to construct an orthonormal basis of the corresponding block Krylov subspace and then extract low rank approximate solutions. We consider the sequential version of the block Arnoldi algorithm by incorporating a deflation technique which allows us to delete linearly and almost linearly dependent vectors in the block Krylov subspace sequences. We give some theoretical results and present numerical experiments for large problems.  相似文献   

8.
The global Arnoldi method can be used to compute exterior eigenpairs of a large non-Hermitian matrix A, but it does not work well for interior eigenvalue problems. Based on the global Arnoldi process that generates an F-orthonormal basis of a matrix Krylov subspace, we propose a global harmonic Arnoldi method for computing certain harmonic F-Ritz pairs that are used to approximate some interior eigenpairs. We propose computing the F-Rayleigh quotients of the large non-Hermitian matrix with respect to harmonic F-Ritz vectors and taking them as new approximate eigenvalues. They are better and more reliable than the harmonic F-Ritz values. The global harmonic Arnoldi method inherits convergence properties of the harmonic Arnoldi method applied to a larger matrix whose distinct eigenvalues are the same as those of the original given matrix. Some properties of the harmonic F-Ritz vectors are presented. As an application, assuming that A is diagonalizable, we show that the global harmonic Arnoldi method is able to solve multiple eigenvalue problems both in theory and in practice. To be practical, we develop an implicitly restarted global harmonic Arnoldi algorithm with certain harmonic F-shifts suggested. In particular, this algorithm can be adaptively used to solve multiple eigenvalue problems. Numerical experiments show that the algorithm is efficient for the eigenproblem and is reliable for quite ill-conditioned multiple eigenproblems.  相似文献   

9.
Novel memory‐efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the standard monomial basis for a larger degree d. The standard way of solving polynomial eigenvalue problems proceeds by linearization, which increases the problem size by a factor d. Consequently, the memory requirements of Krylov subspace methods applied to the linearization grow by this factor. In this paper, we develop two variants of the Arnoldi method that build the Krylov subspace basis implicitly, in a way that only vectors of length equal to the size of the original problem need to be stored. The proposed variants are generalizations of the so‐called quadratic Arnoldi method and two‐level orthogonal Arnoldi procedure methods, which have been developed for the monomial case. We also show how the typical ingredients of a full implementation of the Arnoldi method, including shift‐and‐invert and restarting, can be incorporated. Numerical experiments are presented for matrix polynomials up to degree 30 arising from the interpolation of nonlinear eigenvalue problems, which stem from boundary element discretizations of PDE eigenvalue problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper introduces a new framework for implicit restarting of the Krylov–Schur algorithm. It is shown that restarting with arbitrary polynomial filter is possible by reassigning some of the eigenvalues of the Rayleigh quotient through a rank‐one correction, implemented using only the elementary transformations (translation and similarity) of the Krylov decomposition. This framework includes the implicitly restarted Arnoldi (IRA) algorithm and the Krylov–Schur algorithm with implicit harmonic restart as special cases. Further, it reveals that the IRA algorithm can be turned into an eigenvalue assignment method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
贾仲孝  张萍 《计算数学》2003,25(3):293-304
1.引言 在科学工程计算中经常需要计算大规模矩阵的少数最大或最小的奇异值及其所对应的奇异子空间。例如图像处理中要计算矩阵端部奇异值之比作为图像的分辨率,诸如此类的问题还存在于最小二乘问题、控制理论、量子化学中等等。然而大多实际问题中的矩阵是大型稀疏矩阵,且需要的是矩阵的部分奇异对。如果计算A的完全奇异值分解(SVD),则运算量和存储量极大,甚至不可能。因此必须寻求其它有效可靠的算法。 假设A的SVD为  相似文献   

12.
We consider the problem of computing PageRank. The matrix involved is large and cannot be factored, and hence techniques based on matrix-vector products must be applied. A variant of the restarted refined Arnoldi method is proposed, which does not involve Ritz value computations. Numerical examples illustrate the performance and convergence behavior of the algorithm. AMS subject classification (2000) 65F15, 65C40  相似文献   

13.
Convergence of the implicitly restarted Arnoldi (IRA) method for nonsymmetric eigenvalue problems has often been studied by deriving bounds for the angle between a desired eigenvector and the Krylov projection subspace. Bounds for residual norms of approximate eigenvectors have been less studied and this paper derives a new a-posteriori residual bound for nonsymmetric matrices with simple eigenvalues. The residual vector is shown to be a linear combination of exact eigenvectors and a residual bound is obtained as the sum of the magnitudes of the coefficients of the eigenvectors. We numerically illustrate that the convergence of the residual norm to zero is governed by a scalar term, namely the last element of the wanted eigenvector of the projected matrix. Both cases of convergence and non-convergence are illustrated and this validates our theoretical results. We derive an analogous result for implicitly restarted refined Arnoldi (IRRA) and for this algorithm, we numerically illustrate that convergence is governed by two scalar terms appearing in the linear combination which drives the residual norm to zero. We provide a set of numerical results that validate the residual bounds for both variants of Arnoldi methods.  相似文献   

14.
We extend the Rayleigh-Ritz method to the eigen-problem of periodic matrix pairs. Assuming that the deviations of the desired periodic eigenvectors from the corresponding periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectors may fail to converge. To overcome this potential problem, we minimize residuals formed with periodic Ritz values to produce the refined periodic Ritz vectors, which converge under the same assumption. These results generalize the corresponding well-known ones for Rayleigh-Ritz approximations and their refinement for non-periodic eigen-problems. In addition, we consider a periodic Arnoldi process which is particularly efficient when coupled with the Rayleigh-Ritz method with refinement. The numerical results illustrate that the refinement procedure produces excellent approximations to the original periodic eigenvectors.  相似文献   

15.
This paper proposes a new shift scheme, called refined harmonic shifts, for use in the implicitly restarted refined harmonic Arnoldi method. Numerical experiments show that the implicitly restarted refined harmonic Arnoldi algorithm with refined harmonic shifts is better than the implicitly restarted harmonic Arnoldi algorithm with Morgan's harmonic shifts and the refined harmonic shifts are as efficient as Jia's refined shifts.  相似文献   

16.
In this paper, we introduce a generalized Krylov subspace based on a square matrix sequence {A j } and a vector sequence {u j }. Next we present a generalized Arnoldi procedure for generating an orthonormal basis of . By applying the projection and the refined technique, we derive a restarted generalized Arnoldi method and a restarted refined generalized Arnoldi method for solving a large-scale polynomial eigenvalue problem (PEP). These two methods are applied to solve the PEP directly. Hence they preserve essential structures and properties of the PEP. Furthermore, restarting reduces the storage requirements. Some theoretical results are presented. Numerical tests report the effectiveness of these methods. Yimin Wei is supported by the National Natural Science Foundation of China and Shanghai Education Committee.  相似文献   

17.
Let A be a real square matrix and VTAV = G be an upper Hessenberg matrix with positive subdiagonal entries, where V is an orthogonal matrix. Then the implicit Q-theorem states that once the first column of V is given then V and G are uniquely determined. In this paper, three results are established. First, it holds a reverse order implicit Q-theorem: once the last column of V is given, then V and G are uniquely determined too. Second, it is proved that for a Krylov subspace two formulations of the Arnoldi process are equivalent and in one to one correspondence. Finally, by the equivalence relation and the reverse order implicit Q-theorem, it is proved that for the Krylov subspace, if the last vector of vector sequence generated by the Arnoldi process is given, then the vector sequence and resulting Hessenberg matrix are uniquely determined.  相似文献   

18.
The LSQR iterative method for solving least-squares problems may require many iterations to determine an approximate solution with desired accuracy. This often depends on the fact that singular vector components of the solution associated with small singular values of the matrix require many iterations to be determined. Augmentation of Krylov subspaces with harmonic Ritz vectors often makes it possible to determine the singular vectors associated with small singular values with fewer iterations than without augmentation. This paper describes how Krylov subspaces generated by the LSQR iterative method can be conveniently augmented with harmonic Ritz vectors. Computed examples illustrate the competitiveness of the augmented LSQR method proposed.  相似文献   

19.
The Arnoldi-type algorithm proposed by Golub and Greif [G. Golub, C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT 46 (2006) 759-771] is a restarted Krylov subspace method for computing PageRank. However, this algorithm may not be efficient when the damping factor is high and the dimension of the search subspace is small. In this paper, we first develop an extrapolation method based on Ritz values. We then consider how to periodically knit this extrapolation method together with the Arnoldi-type algorithm. The resulting algorithm is the Arnoldi-Extrapolation algorithm. The convergence of the new algorithm is analyzed. Numerical experiments demonstrate the numerical behavior of this algorithm.  相似文献   

20.
By transforming nonsymmetric linear systems to the extended skew-symmetric ones, we present the skew-symmetric methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on the block and global Arnoldi algorithm which is formed by implementing orthogonal projections of the initial matrix residual onto a matrix Krylov subspace. The algorithms avoid the tediously long Arnoldi process and highly reduce expensive storage. Numerical experiments show that these algorithms are effective and give better practical performances than global GMRES for solving nonsymmetric linear systems with multiple right-hand sides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号