首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
研究由两个部件串联组成的系统的预防维修策略, 当系统的工作时间达到T时进行预防维修, 预防维修使部件恢复到上一次故障维修后的状态. 当部件发生故障后进行故障维修, 因为各种原因可能会延迟修理. 部件在每次故障维修后的工作时间形成随机递减的几何过程, 且每次故障后的维修时间形成随机递增的几何过程. 以部件进行预防维修的间隔T和更换前的故障次数N组成的二维策略(T,N)为策略, 利用更新过程和几何过程理论求出了系统经长期运行单位时间内期望费用的表达式, 并给出了具体例子和数值分析.  相似文献   

2.
高俏俏 《运筹与管理》2021,30(3):117-122
本文研究的是由两个部件串联组成且有两种故障状态的系统的预防维修策略, 当系统的工作时间达到T时进行预防维修, 预防维修使部件恢复到上一次故障维修后的状态。每个部件发生故障都有两种状态, 可维修和不可维修。当部件的故障为可维修故障时, 修理工对其进行故障维修, 且每次故障维修后的工作时间形成随机递减的几何过程, 每次故障后的维修时间形成随机递增的几何过程。当部件发生N次可维修故障或一次不可维修故障时进行更换。以部件进行预防维修的间隔和更换前的可维修故障次数N组成的二维策略(T, N) 为策略, 利用更新过程和几何过程理论求出了系统经长期运行单位时间内期望费用的表达式, 并给出了具体例子和数值分析。  相似文献   

3.
In this paper, a δ-shock maintenance model for a deteriorating system is studied. Assume that shocks arrive according to a renewal process, the interarrival time of shocks has a Weibull distribution or gamma distribution. Whenever an interarrival time of shocks is less than a threshold, the system fails. Assume further the system is deteriorating so that the successive threshold values are geometrically nondecreasing, and the consecutive repair times after failure form an increasing geometric process. A replacement policy N is adopted by which the system will be replaced by an identical new one at the time following the Nth failure. Then the long-run average cost per unit time is evaluated. Afterwards, an optimal policy N* for minimizing the long-run average cost per unit time could be determined numerically.  相似文献   

4.
针对修理工带有单重休假的单部件可修系统,提出了一种新的维修更换模型.假定系统是可修的,逐次故障后的维修时间构成随机递增的几何过程,系统工作时间构成随机递增的几何过程,在修理工休假时间为定长的情况下,分别选取系统的总工作时间T和故障维修次数N为更换策略,以长期运行单位时间内的期望效益为目标函数,通过更新过程和几何过程理论建立数学模型,导出了目标函数的解析表达式,通过最大化目标函数来获取系统最优的更换策略T*和N*.并在一定条件下给出了策略N比策略T优的充分条件.最后,通过数值例子验证了方法的有效性.  相似文献   

5.
This paper considers anN-unit series system supported by a warm standby unit and a single repair facility. Suppose that the operating units and the standby unit have constant failure ratesa anda 1, respectively. When the system is down, all the operable units have constant failure ratea 2. The repair time of a failed unit has an arbitrary distribution. Using Takács' method and a Markov renewal process, we discuss the stochastic behavior of this system and obtain the explicit formulae of the system availability and failure frequency.Project supported by the National Natural Science Foundation of China.  相似文献   

6.
Miaomiao Yu  Yinghui Tang 《TOP》2017,25(1):80-94
We study a \(\delta \) shock and wear model in which the system can fail due to the frequency of the shocks caused by external conditions, or aging and accumulated wear caused by intrinsic factors. The external shocks occur according to a Bernoulli process, i.e., the inter-arrival times between two consecutive shocks follow a geometric distribution. Once the system fails, it can be repaired immediately. If the system is not repairable in a pre-specific time D, it can be replaced by a new one to avoid the unnecessary expanses on repair. On the other hand, the system can also be replaced whenever its number of repairs exceeds N. Given that infinite operating and repair times are not commonly encountered in practical situations, both of these two random variables are supposed to obey general discrete distribution with finite support. Replacing the finite support renewal distributions with appropriate phase-type (PH) distributions and using the closure property associated with PH distribution, we formulate the maximum repair time replacement policy and obtain analytically the long-run average cost rate. Meanwhile, the optimal replacement policy is also numerically determined by implementing a two-dimensional-search process.  相似文献   

7.
In this paper, we study the geometric process replacement model as follows: the successive survival times of the system form a nonincreasing geometric process while the consecutive repair times of the system constitute a non-decreasing geometric process, and the system is replaced at the time of theNth failure after its installation or last replacement. Based on the long-run average cost per unit time, we determine the optimal replacement policyN* show the uniquess of the policyN* and discuss its monotonicity.  相似文献   

8.
In this paper, the maintenance problem for a cold standby system consisting of two dissimilar components and one repairman is studied. Assume that both component 1 and component 2 after repair follow geometric process repair and component 1 is given priority in use when both components are workable. Under these assumptions, using geometric process repair model, we consider a replacement policy N under which the system is replaced when the number of failures of component 1 reaches N. Our purpose is to determine an optimal replacement policy N1 such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression for the average cost rate of the system is derived and the corresponding optimal replacement policy N1 can be determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results and the model applicability.  相似文献   

9.
In this paper, the optimal replacement problem is investigated for a system with two types of failures. One type of failure is repairable, which is conducted by a repairman when it occurs, and the other is unrepairable, which leads to a replacement of the system at once. The repair of the system is not “as good as new”. The consecutive operating times of the system after repair form a decreasing geometric process, while the repair times after failure are assumed to be independent and identically distributed. Replacement policy N is adopted, where N is the number of repairable failures. The system will be replaced at the Nth repairable failure or at the unrepairable failure, whichever occurs first. Two replacement models are considered, one is based on the limiting availability and the other based on the long-run average cost rate of the system. We give the explicit expressions for the limiting availability and the long-run average cost rate of the system under policy N, respectively. By maximizing the limiting availability A(N) and minimizing the long-run average cost rate C(N), we theoretically obtain the optimal replacement policies N in both cases. Finally, some numerical simulations are presented to verify the theoretical results.  相似文献   

10.
针对定期检修退化可修系统提出了一种维修更换模型,且假定系统在每个周期中检修时间逐渐递增、检修"修复如旧"和故障维修为"修复非新"时,选择系统的故障次数N为更换策略,利用更新过程和单调的几何过程理论建立数学模型,求出了系统经长期运行单位时间内的期望效益的表达式.最后还对结果进行了讨论,并给出了数值例子验证该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号