首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
In this paper, we study vanishing viscosity limit of 1-D isentropic compressible Navier–Stokes equations with general viscosity to isentropic Euler equations. Firstly, we improve estimates of the entropy flux, then we obtain that the weak solution of the isentropic Euler equations is the inviscid limit of the isentropic compressible Navier–Stokes equations with general viscosity using the compensated compactness frame recently established by G.-Q. Chen and M. Perepelitsa.  相似文献   

3.
We prove that any weak space-time \(L^2\) vanishing viscosity limit of a sequence of strong solutions of Navier–Stokes equations in a bounded domain of \({\mathbb R}^2\) satisfies the Euler equation if the solutions’ local enstrophies are uniformly bounded. We also prove that \(t-a.e.\) weak \(L^2\) inviscid limits of solutions of 3D Navier–Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.  相似文献   

4.
In this paper, we study the zero viscosity and capillarity limit problem for the one‐dimensional compressible isentropic Navier–Stokes–Korteweg equations when the corresponding Euler equations have rarefaction wave solutions. In the case that either the effects of initial layer are ignored or the rarefaction waves are smooth, we prove that the solutions of the Navier–Stokes–Korteweg equation with centered rarefaction wave data exist for all time and converge to the centered rarefaction waves as the viscosity and capillarity number vanish, and we also obtain a rate of convergence, which is valid uniformly for all time. These results are showed by a scaling argument and elementary energy analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We shall consider the two-dimensional (2D) isentropic Navier–Stokes–Korteweg equations which are used to model compressible fluids with internal capillarity. Formally, the 2D isentropic Navier–Stokes–Korteweg equations converge, as the viscosity and the capillarity vanish, to the corresponding 2D inviscid Euler equations, and we do justify this for the case that the corresponding 2D inviscid Euler equations admit a planar rarefaction wave solution. More precisely, it is proved that there exists a family of smooth solutions for the 2D isentropic compressible Navier–Stokes–Korteweg equations converging to the planar rarefaction wave solution with arbitrary strength for the 2D Euler equations. A uniform convergence rate is obtained in terms of the viscosity coefficient and the capillarity away from the initial time. The key ingredients of our proof are the re-scaling technique and energy estimate, in which we also introduce the hyperbolic wave to recover the physical viscosities and capillarity of the inviscid rarefaction wave profile.  相似文献   

6.
In this paper, we consider the one-dimensional (1D) compressible bipolar Navier–Stokes–Poisson equations. We know that when the viscosity coefficient and Debye length are zero in the compressible bipolar Navier–Stokes–Poisson equations, we have the compressible Euler equations. Under the case that the compressible Euler equations have a rarefaction wave with one-side vacuum state, we can construct a sequence of the approximation solution to the one-dimensional bipolar Navier–Stokes–Poisson equations with well-prepared initial data, which converges to the above rarefaction wave with vacuum as the viscosity and the Debye length tend to zero. Moreover, we also obtain the uniform convergence rate. The results are proved by a scaling argument and elaborate energy estimate.  相似文献   

7.
We consider the Navier–Stokes equations in a 2D-bounded domain with general non-homogeneous Navier slip boundary conditions prescribed on permeable boundaries, and study the vanishing viscosity limit. We prove that solutions of the Navier–Stokes equations converge to solutions of the Euler equations satisfying the same Navier slip boundary condition on the inflow region of the boundary. The convergence is strong in Sobolev’s spaces $W^{1}_{p}, p>2$ , which correspond to the spaces of the data.  相似文献   

8.
In this paper, we consider the inviscid limit for the periodic solutions to Navier–Stokes equation in the framework of Gevrey class. It is shown that the lifespan for the solutions to Navier–Stokes equation is independent of viscosity, and that the solutions of the Navier–Stokes equation converge to that of Euler equation in Gevrey class as the viscosity tends to zero. Moreover, the convergence rate in Gevrey class is presented. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The focus of this paper is on the analysis of the boundary layer and the associated vanishing viscosity limit for two classes of flows with symmetry, namely, Plane-Parallel Channel Flows and Parallel Pipe Flows. We construct explicit boundary layer correctors, which approximate the difference between the Navier–Stokes and the Euler solutions. Using properties of these correctors, we establish convergence of the Navier–Stokes solution to the Euler solution as viscosity vanishes with optimal rates of convergence. In addition, we investigate vorticity production on the boundary in the limit of vanishing viscosity. Our work significantly extends prior work in the literature.  相似文献   

10.
We study a nonlocal modification of the compressible Navier–Stokes equations in mono‐dimensional case with a boundary condition characteristic for the free boundaries problem. From the formal point of view, our system is an intermediate between the Euler and Navier–Stokes equations. Under certain assumptions, imposed on initial data and viscosity coefficient, we obtain the local and global existence of solutions. Particularly, we show the uniform in time bound on the density of fluid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We study the solutions of the Navier–Stokes equations when the initial vorticity is concentrated in small disjoint regions of diameter ?. We prove that they converge, uniformily in ?. for vanishing viscosity to the corresponding solutions of the Euler equations and they are connected to the vortex model.  相似文献   

12.
ABSTRACT

The combining quasineutral and inviscid limit of the Navier–Stokes–Poisson system in the torus 𝕋 d , d ≥ 1 is studied. The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations is proven for the global weak solution and for the case of general initial data.  相似文献   

13.
In this paper we study the incompressible limit of the degenerate quantum compressible Navier–Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier–Stokes equations converge to the strong solution of the incompressible Navier–Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier–Stokes equations to the strong solution of the incompressible Navier–Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.  相似文献   

14.
We consider a singular limit for the compressible Navier–Stokes system with general non-monotone pressure law in the asymptotic regime of low Mach number and large Reynolds numbers. We show that any dissipative weak solution approaches the solution of incompressible Euler equation both for well-prepared initial data and ill-prepared initial data.  相似文献   

15.
This paper is devoted to the investigation of stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations. For a Leray weak solution of the Navier–Stokes equations in a critical Besov space, it is shown that the Leray weak solution is uniformly stable with respect to a small perturbation of initial velocity and external forcing. If the perturbation is not small, the perturbed weak solution converges asymptotically to the original weak solution as the time tends to the infinity. Additionally, an energy equality and weak–strong uniqueness for the three-dimensional Navier–Stokes equations are derived. The findings are mainly based on the estimations of the nonlinear term of the Navier–Stokes equations in a Besov space framework, the use of special test functions and the energy estimate method.  相似文献   

16.
This paper is devoted to the study of a class of hemivariational inequalities for the time-dependent Navier–Stokes equations, including both boundary hemivariational inequalities and domain hemivariational inequalities. The hemivariational inequalities are analyzed in the framework of an abstract hemivariational inequality. Solution existence for the abstract hemivariational inequality is explored through a limiting procedure for a temporally semi-discrete scheme based on the backward Euler difference of the time derivative, known as the Rothe method. It is shown that solutions of the Rothe scheme exist, they contain a weakly convergent subsequence as the time step-size approaches zero, and any weak limit of the solution sequence is a solution of the abstract hemivariational inequality. It is further shown that under certain conditions, a solution of the abstract hemivariational inequality is unique and the solution of the abstract hemivariational inequality depends continuously on the problem data. The results on the abstract hemivariational inequality are applied to hemivariational inequalities associated with the time-dependent Navier–Stokes equations.  相似文献   

17.
In this note, by constructing suitable approximate solutions, we prove the existence of global weak solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients in the whole space or exterior domain, when the initial data are spherically symmetric. In particular, we prove the existence of spherically symmetric solutions to the Saint-Venant model for shallow water in the whole space (or exterior domain).  相似文献   

18.
We consider the zero-electron-mass limit for the Navier?CStokes?CPoisson system in unbounded spatial domains. Assuming smallness of the viscosity coefficient and ill-prepared initial data, we show that the asymptotic limit is represented by the incompressible Navier?CStokes system, with a Brinkman damping, in the case when viscosity is proportional to the electron-mass, and by the incompressible Euler system provided the viscosity is dominated by the electron mass. The proof is based on the RAGE theorem and dispersive estimates for acoustic waves, and on the concept of suitable weak solutions for the compressible Navier?CStokes system.  相似文献   

19.
We study the convergence of weak solutions of the Navier–Stokes equations with vanishing measurable viscous coefficients in domains with nonflat boundaries. Sufficient anisotropic conditions on the vanishing rates of the viscous coefficients are found to prove the convergence of Leray–Hopf weak solutions of the Navier–Stokes equations to solutions of the corresponding Euler equations. As the domains are not flat, we apply a change of variables to flatten the domains. We then construct explicit boundary layers for the system of Navier–Stokes equations in the upper-half space with measurable viscous coefficients. The result is new even when the viscous coefficients are constant, and it recovers the classical results when domains are flat and with constant viscous coefficients.  相似文献   

20.
In this note we consider the inviscid limit for the 3D Boussinesq equations without diffusion, under slip boundary conditions of Navier’s type. We first study more closely the Navier–Stokes equations, to better understand the problem. The role of the initial data is also emphasized in connection with the vanishing viscosity limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号