首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vanishing viscosity limit of the Navier‐Stokes equations to the euler equations for compressible fluid flow
Authors:Gui‐Qiang G Chen  Mikhail Perepelitsa
Institution:1. University of Oxford, Mathematical Institute, 24‐29 St. Giles', Oxford, OX1 3LB, UNITED KINGDOM;2. Northwestern University, Department of Mathematics, 2033 Sheridan Road, Evanston, IL 60208;3. University of Houston, Department of Mathematics, 651 PGH, Houston, TX 77204‐3008
Abstract:We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号